Pangeo community platform for scientific data processing

OMP 2019/04/02, Guillaume Eynard-Bontemps, CNES/Pangeo

Pangeo community goals and motivation

Mission

To cultivate an ecosystem in whether next generation of open-source analysis tools for the geosciences can be developed, distributed, and sustained.

Problems

- Data volume crisis in (geo)sciences
- Software multiplication, non reproducibility
 Many copies of the same datasets
 ocal vs HPC vs Cloud
 echnology gap: industry vs academia

als/vision

oster collaboration around the open source Scientific Python ecosystem:

- open and collaborative development
- Welcoming and inclusive culture
- Support the development with domain-specific (geo)science and transverse packages
- Improve scalability of these tools to handle gigabytes to petabytescale datasets

Pangeo ecosystem

- Set of tools that will facilitate science at all scales
- Platform agnostic
- The core of the Pangeo ecosystem includes:
 - Xarray (data-model and toolkit for working with N-dimensional labeled arrays)
 - Dask (parallel computing)
 - Jupyter (interactive computing)
- Extensible: Series of 3rd party packages that build on top of core libraries
- Flexible: Individual components may be swapped in/out

Examples of 3rd party packages in the Pangeo Ecosystem:

- Data discovery
- Regridding and GIS
- Vector calculus
- Signal processing
- Thermodynamics

Jupyter

- "The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, machine learning and much more."
- Originally "Python-centric" but has been expanded to include over 40 popular programming languages (e.g. Julia and R)
- Check it out at: http://jupyter.org

- Dask is a flexible parallel computing library for analytic computing
- Parallel arrays allow us to seamlessly scale serial programs and workflows
- Dynamic task scheduling is optimized for computation
- Can be utilized on a single machine or a cluster of machines

Dask arrays coordinate many NumPy arrays arranged into a grid. These NumPy arrays may live on disk or on other machines.

Example of a Dask task graph for a simple, embarrassingly parallel reduction operation.

Source: Dask documentation

Xarray

- N-D labeled arrays and datasets in Python
- Data model emulates the Common Data Model (e.g. NetCDF)
- Key features:
 - Label-based indexing
 - Interoperability with core scientific Python packages
 - Parallel computation using Dask
 - Wide range of input/output options
 - Robust data analysis and manipulation toolkit

Hoyer, S. & Hamman, J., (2017). Xarray: N-D labeled Arrays and Datasets in Python. Journal of Open Research Software. 5(1), p.10. DOI: http://doi.org/10.5334/jors.148

BUILD YOUR OWN PANGEO

Storage Formats	HF	OPeNDAP	Cloud Optimized COG/Zarr/Parquet/etc.
ND-Arrays	NumPy	DASK	More coming
Data Models	xarray	Iris	$ extstyle egin{aligned} extstyle extstyle pandas \ y_i t = eta' x_{it} + \mu_i + \epsilon_{it} \end{aligned}$
Processing Mode	Jupyter Interactive	Batch	Serverless
Compute Platform	HPC HIVE	Cloud Google Cloud Platform	Local

Pangeo HPC deployment

NCAR's Cheyenne Super Computer

- 4 145,152 processors
- 52.7 Pb of parallel disk storage
- InfiniBand high-speed interconnect

dask.distributed: parallel workers across many HPC nodes

Xarray for computational toolkit and I/O

Jupyter notebooks for interactive computing

New tools for deploying dask clusters on HPC

e.g. dask-jobqueue¹

^{1:} https://github.com/dask/dask-jobqueue

Pangeo public cloud deployment

hub.pangeo.io pangeo.binder.io

JupyterHub/BinderHub running on the Google Cloud

- Kubernetes for both Jupyter and Daskdistributed
 - Dask-kubernetes
- Exploring/evaluating:
 - Cloud storage
 - User environment customization
 - Data discovery
- Kubernetes Helm-chart (github.com/pangeo-data/helm-chart)
- CI/CD with Hubploy and CircleCI
- Deployments exist on AWS and Azure.

Pangeo vs state of the art

VS

Mature

Robust

JVM/Python

Query optimized

Collections & Dataframes

Python overhead

For big tabular data

Hadoop/Cloud/HPC

Less Mature

Pretty strong

Python only

Science optimized

Collections, DF, Arrays, Futures...

Python only

For science data

Hadoop/Cloud/HPC

Laptop to cluster

Serverless

NetCDF/TIFF no ingestion

Scales with Dask

Python only

Can build array db with Pangeo (Open data Cube)

HPC usecases in CNES

Two main kinds of processing

Numerical simulation (HPC)

- Upstream phase, R&D
- Highly optimized technics
- Fine grain parallelism

Trends: multiscale, multiphysics

Data Processing (HTC)

- Downstream phase, operation
- Sensors data → scientific data
- Coarse grain parallelism

Trends: data volume explosion

Pangeo at CNES

- JupyterHub and notebooks for interactive computing
 - Hub on a VM with qsub access
 - Batchspawner, Wrapspawner
- dask.distributed: parallel workers across many HPC nodes
- Xarray for computational toolkit and I/O
- New tool for deploying dask clusters on HPC: dask-jobqueue
 - Start a cluster from a notebook
 - Interactive (or not) distributed computing
 - Auto scaling capabilities

Demos @ CNES

Pangeo Cloud use

Geoscience use cases:

http://pangeo.io/use_cases/index.html

Astronomy with GAIA catalog:

https://github.com/pangeodata/pangeo/issues/255#issuecomment-427186915

Image processing and visualization

https://medium.com/pangeo/cloud-nativegeoprocessing-of-earth-observation-satellite-data-withpangeo-997692d91ca2

Conclusions

- Pangeo ecosystem greatity facilitates distributed computing and data analysis at scale
- It changes ways of doing it too
- Non monolithic platform built on top of existing
 Scientific Python stack and new related packages
- Community is always here to help
- Dask more versatile and easy to use than Spark.

Next steps

- Broaden users and use cases at CNES
- Encourage people to get in touch with Pangeo community
- Work in cooperation with others (Ongoing with Ifremer and CLS on SWOT aval data processing)
- Get involved!!
- Pangeo french meeting ont May 23rd

Pangeo wesite and discussions:

https://pangeo.io

https://github.com/pangeo-data/pangeo/issues

https://medium.com/pangeo

Pangeo Example + Binder:

https://github.com/pangeo-data/pangeo-example-notebooks

http://binder.pangeo.io/v2/gh/pangeo-data/pangeo-example-notebooks/master

Dask jobqueue:

https://github.com/dask/dask-jobqueue

Dask simple examples:

https://github.com/dask/dask-examples

My email

Guillaume.Eynard-Bontemps@cnes.fr

Github and binder link:

https://github.com/guillaumeeb/pangeo-tutorial-agu-2018

https://binder.pangeo.io/v2/gh/guillaumeeb/pangeo-tutorial-

Dask only tutorial:

https://github.com/mrocklin/pydata-nyc-2018-tutorial

Other binder resources:

https://github.com/pangeo-data/pangeo-example-notebooks

https://github.com/pangeo-data/pangeo ocean examples

https://github.com/dask/dask-examples

