
Pangeo community platform for scientific data processing

OMP 2019/04/02, Guillaume Eynard-Bontemps, CNES/Pangeo

Problems

• Data volume crisis in (geo)sciences
• Software multiplication, non reproducibility
• Many copies of the same datasets
• Local vs HPC vs Cloud
• Technology gap: industry vs academia

Pangeo community goals and motivation

Mission

To cultivate an ecosystem in which

the next generation of open-source

analysis tools for the geosciences

can be developed, distributed, and

sustained.

Projected NASA Cloud Storage

300 Peta Bytes

Goals/vision

• Foster collaboration around the open source
Scientific Python ecosystem:

• open and collaborative development
• Welcoming and inclusive culture

• Support the development with domain-specific
(geo)science and transverse packages

• Improve scalability of these tools to handle
gigabytes to petabytescale datasets

Pangeo ecosystem

HPC / Cloud Compute

Examples of 3rd party packages

in the Pangeo Ecosystem:
• Data discovery

• Regridding and GIS

• Vector calculus

• Signal processing

• Thermodynamics

• Set of tools that will facilitate science
at all scales

• Platform agnostic

• The core of the Pangeo ecosystem
includes:

• Xarray (data-model and toolkit
for working with N-dimensional
labeled arrays)

• Dask (parallel computing)

• Jupyter (interactive computing)

• Extensible: Series of 3rd party
packages that build on top of core
libraries

• Flexible: Individual components may
be swapped in/out

Jupyter

• “The Jupyter Notebook is an
open-source web application that
allows you to create and share
documents that contain live code,
equations, visualizations and
explanatory text. Uses include:
data cleaning and transformation,
numerical simulation, statistical
modeling, machine learning and
much more.”

• Originally “Python-centric” but
has been expanded to include
over 40 popular programming
languages (e.g. Julia and R)

• Check it out at: http://jupyter.org

Jupyter

Dask

• Dask is a flexible parallel computing

library for analytic computing

• Parallel arrays allow us to

seamlessly scale serial programs

and workflows

• Dynamic task scheduling is

optimized for computation

• Can be utilized on a single machine

or a cluster of machines

Dask arrays

coordinate many

NumPy arrays

arranged into a

grid. These

NumPy arrays

may live on disk

or on other

machines.

Source: Dask documentation

Example of a Dask task graph for a simple, embarrassingly

parallel reduction operation.

Dask

• N-D labeled arrays and datasets in

Python

• Data model emulates the Common

Data Model (e.g. NetCDF)

• Key features:

• Label-based indexing

• Interoperability with core scientific

Python packages

• Parallel computation using Dask

• Wide range of input/output options

• Robust data analysis and

manipulation toolkit

Mainstream “big data” technologies such as Hadoop are not well sui ted to cl imate

datasets, which consist mostly of mult idimensional numerical array data stored in the

netCDF format. Addi t ional ly, cl imate science analysis pipel ines are highly diverse,

including classical statist ics, empirical orthogonal function (EOF) analysis,

sophisticated fin i te-volume vector calculus operations, spatio-temporal spectral

analysis, and machine learning. Flexibi l i ty is key. Our solution involves integrating

emerging technologies from the open-source Scientific Python ecosystem.

XArray

XArray is a communi ty-developed,

open-source software project and

Python package that provides tools

and data structures for work ing

wi th N-dimensional labeled arrays

(Hoyer & Hamman, 2017). The XArray data model is based on the Common Data Model

(CDM) used wi th netCDF, which provides a standard for metadata-enabled self-

describing scientific datasets. The labels used by XArray come from the metadata

described by the CDM—examples of labels (also referred to as coordinates) might

include lat i tude, longi tude, t ime, as in the figure above.

Bui l t on top of the XArray data model is a robust toolk i t that includes the fol lowing key

features:

1. label-based indexing and ari thmetic

2. interoperabi l i ty wi th the core scientific Python packages (e.g. Pandas, NumPy,

Matplot l ib)

3. out-of-core computation on datasets that don ’t fit into memory (via Dask)

4. a wide range of serial izat ion and input/output (I/O) options (e.g. NetCDF 3/4,

OPeNDAP (read-only), GRIB 1/2 (read-only), and HDF 4/5)

5. advanced mult i -dimensional data manipulat ion tools such as group-by and

resampling

XArray ’s high-level interface is wel l-documented, intui t ive, and easy to use. For the

geoscience communi ty, this faci l i tates a relatively painless transi t ion to Python.

Dask

Dask is a system for paral lel computing that coordinates wel l wi th Python's exist ing

scientific software ecosystem. Data analysis tools l ike XArray use Dask to paral lel ize

complex work loads across many cores on a single workstation or across many

machines in a distributed cluster. Dask manages running tasks on di fferent workers,

track ing the location of intermediate results, moving data across the network,

managing fai led nodes, etc.

Dask can be used at ei ther a high level or low

level. At a high level, Dask provides paral lel

mult i -dimensional arrays, tables, machine

learning tools, etc. that paral lel ize exist ing

popular l ibraries l ike NumPy, Pandas, and

Scik i t-Learn respectively. For example

Dask.array provides a distributed mult i -

dimensional array interface that is API-

compatible wi th NumPy, Scientific Python's standard array solution. Dask arrays are

composed of many smaller in-memory NumPy arrays distributed throughout a cluster

of machines. Operations on a Dask array trigger many smaller operations on the

consti tuent Numpy arrays.

At a low level, Dask is a dynamic

distributed task scheduler. Any Dask

computation creates a task graph wi th

dependencies. Each task is composed of

a function to be appl ied on some piece

of data, such as a single NumPy array

chunk, or on the results of other

dependent tasks. For non-trivial

computations, dependencies exist

between tasks, such that the results of one computation are required by others. Normal

cl imate science computations create a complex web of hundreds of thousands of small

tasks. It is Dask ’s job to take this web of small tasks and map i t intel l igently to the

avai lable computing resources in such a way that balances load, minimizes data

transfer, responds to busy or fai led workers, etc.

Jupyter Notebook
Jupyter Notebook is a web applicat ion that supports interactive code

execution, display of figures, and in-l ine explanatory text and equations.

Jupyter Notebooks are ubiqui tous in the scientific python communi ty. There is no

apparent di fference to the user between a local Jupyter Notebook and one running on a

remote system, faci l i tat ing a seamless transi t ion to a cloud and HPC envi ronments.

Pangeo: A Big Data Climate Science Platform

1 Climate Science’s Data Flood

The need to understand our changing planet has never been more

urgent. Satel l i te observations and numerical simulation outputs are two

of the main sources of data in cl imate science. Trends in technology are

driving both types of dataset to increase exponential ly in size, creating a

major bott leneck for scientific progress.

Earth-observing satel l i tes help

moni tor cl imate variabi l i ty and

provide detai led, global view of

cl imate processes. For example, the

upcoming NASA Surface Water and

Ocean Topography (SWOT) mission

wi l l measure ocean sea-surface

height wi th unprecedented ~5 km

resolution. This provides a great

opportuni ty to better understand

ocean physics, i f we can efficiently

analyze the data.

Cl imate, weather, and ocean simulations (Earth

System Models; ESMs) are crucial tools for the

study of the Earth system, providing both

scientific insight into fundamental dynamics as

well as valuable practical predict ions about

Earth's future. Continuous increases in ESM

spatial resolution have led to more real ist ic, more

detai led physical representations of Earth system

processes, whi le the prol i ferat ion of statist ical

ensembles of simulations has greatly enhanced

understanding of uncertainty and internal

variabi l i ty. Hand in hand wi th this progress has

come the generation of Petabytes of simulation

data. Tradi t ional analysis tools can ’t handle i t .

4 Future Plans

2 Scientific Python Building Blocks

3 Deployment on Columbia HPC

Ryan Abernathey1, Joe Hamman2,

Matt Rocklin3

Product Size

CMIP3 (2007) 36 TB

CMIP5 (2012) 3.3 PB

CMIP6 (2017) 150 PB

ERA Interim (2011) 36 TB

ERA 5 (2017) 5 PB

import	xarray	as	xr	

#	Load	a	netCDF	dataset	
ds	=	xr.open_dataset('air_temperature.nc')	
#	Resample	daily	data	to	monthly	means	
ds	=	ds.resample('MS',	dim='time',	how='mean')	
#	Calculate	a	monthly	climatology	
climatology	=	ds.groupby('time.month').mean(dim='time')	
#	Calculate	monthly	anomalies	
anomalies	=	ds.groupby('time.month')	-	climatology	
#	Plot	an	example	monthly	anomaly	(June	2013)	
anomalies.sel(time='2013-06')['air'].plot()

('transpose-#0', 1, 1)

add

transpose

('wrapped-#1', 1, 1)

('add-#2', 0, 1)

add

('wrapped-#1', 0, 1)

transpose

('transpose-#0', 0, 1) ('wrapped-#1', 2, 1)

add transpose

ones

('transpose-#0', 2, 1)

transpose

('wrapped-#1', 1, 2)

add

('add-#2', 1, 2)

('transpose-#0', 1, 2)('transpose-#0', 1, 0)

add

('add-#2', 2, 0)

add

('wrapped-#1', 2, 0)

transpose

('transpose-#0', 2, 0)

ones

('add-#2', 1, 1) ('add-#2', 2, 1)

('add-#2', 1, 0)

('wrapped-#1', 1, 0)

transpose

('transpose-#0', 2, 2)

add

transpose

('wrapped-#1', 2, 2)

ones

('add-#2', 2, 2)

ones

transpose

('wrapped-#1', 0, 2)

add

ones ones

('transpose-#0', 0, 0)

add

transpose

('wrapped-#1', 0, 0)

ones

('add-#2', 0, 2)

('transpose-#0', 0, 2)

ones

('add-#2', 0, 0)

ones

1: Columbia Universi ty / Lamont Doherty Earth Observatory

2: National Center for Atmospheric Research

3: Continuum Analytics

Climate scientists usually have access to tradi t ional high-performance computing

(HPC) systems for running models. Here we demonstrate how such systems can be

leveraged for Big Data analysis. We deployed XArray, Dask, and Dask.Distributed on

Columbia’s Habanero HPC system. We benchmarked a typical cl imate science

workflow: tak ing a power spectrum of a numerical simulation. This task includes

both I/O bound (reading data) and compute bound (calculating Fourier transform)

tasks. We achieved paral lel scal ing on a single node using up to 24 threads,

reaching a data throughput of >700 MB/s.

HPC

web browser

s
to

ra
g

e
 n

o
d

e
s

dask

end user

compute nodes

The mission of the Pangeo Project is to cult ivate an ecosystem in which the next

generation of open-source analysis tools for ocean, atmosphere and cl imate science

can be developed, distributed, and sustained. These tools must be scalable in order

to meet the current and future chal lenges of big data, and these solutions should

leverage the exist ing Big Data expertise outside of the AOC communi ty. We envision

a col lection of related but independent open-source packages that meet specific

scientific needs wi thin the AOC fields. Design documents have have been developed

for: signal processing, vector calculus, thermodynamics, data storage / discovery,

regridding, and regions / shapes.

More Info

•pangeo-data.gi thub.io

•gi thub.com/pydata/xarray/

•gi thub.com/dask/dask

Hoyer, S. & Hamman, J., (2017). Xarray: N-D

labeled Arrays and Datasets in Python.

Journal of Open Research Software. 5(1),

p.10. DOI: http://doi.org/10.5334/jors.148

Xarray

Pangeo diversity

NCAR’s Cheyenne Super Computer

 145,152 processors

 52.7 Pb of parallel disk storage

 InfiniBand high-speed interconnect

dask.distributed: parallel workers
across many HPC nodes

Xarray for computational toolkit and
I/O

Jupyter notebooks for interactive
computing

New tools for deploying dask clusters
on HPC

 e.g. dask-jobqueue1

1: https://github.com/dask/dask-jobqueue

Pangeo HPC deployment

hub.pangeo.io

pangeo.binder.io

JupyterHub/BinderHub running on the
Google Cloud

• Kubernetes for both Jupyter and Dask-
distributed

• Dask-kubernetes

• Exploring/evaluating:

• Cloud storage

• User environment customization

• Data discovery

• Kubernetes Helm-chart
(github.com/pangeo-data/helm-chart)

• CI/CD with Hubploy and CircleCI

• Deployments exist on AWS and Azure.

Pangeo public cloud deployment

Pangeo vs state of the art

Mature

Robust

JVM/Python

Query optimized

Collections &

Dataframes

Python overhead

For big tabular data

Hadoop/Cloud/HPC

Mature

Robust

JVM/Python

Query optimized

Collections &

Dataframes

Python overhead

For big tabular data

Hadoop/Cloud/HPC

Less Mature

Pretty strong

Python only

Science optimized

Collections, DF,

Arrays, Futures…

Python only

For science data

Hadoop/Cloud/HPC

Less Mature

Pretty strong

Python only

Science optimized

Collections, DF,

Arrays, Futures…

Python only

For science data

Hadoop/Cloud/HPC

VS

Array

databases

(Rasdaman,

SciDB…)

VS

Laptop to cluster

Serverless

NetCDF/TIFF no ingestion

Scales with Dask

Python only

Can build array db with Pangeo

(Open data Cube)

Laptop to cluster

Serverless

NetCDF/TIFF no ingestion

Scales with Dask

Python only

Can build array db with Pangeo

(Open data Cube)

HPC (HAL)

• 500Tflops CPU

• 460 batch servers / 11K cores

• 8 interactive servers pre/post processing w/ GPU

• 8 PB GPFS / 250TB burst buffer/ 100GBs bandwidth

• Low latency network

• GPGPU Nvidia Volta V100, 240Tflops

HPC DRSF (Ktulu)

• 20 Tflops

• 2 interactive servers pre/post
processing w/ GPU

• 24 servers / 576 cores

• 120TB GPFS

• Low latency network

CNES Datacenter overview

Data Processing (HTC)

• Downstream phase, operation
• Sensors data → scientific data

• Coarse grain parallelism

Trends : data volume explosion

Numerical simulation (HPC)

• Upstream phase, R&D
• Highly optimized technics
• Fine grain parallelism

Trends : multiscale, multiphysics

Two main kinds of processing

HPC usecases in CNES

• JupyterHub and notebooks for
interactive computing

• Hub on a VM with qsub access

• Batchspawner, Wrapspawner

• dask.distributed: parallel workers
across many HPC nodes

• Xarray for computational toolkit and I/O

• New tool for deploying dask clusters on
HPC: dask-jobqueue

• Start a cluster from a notebook

• Interactive (or not) distributed
computing

• Auto scaling capabilities

Pangeo at CNES

Dask and dask-jobqueue basic example

Demos @ CNES

Going deeper with Xarray

Some realistic workload

Image processing: NDVI

Geoscience use cases:

http://pangeo.io/use_cases/index.html

Pangeo Cloud use

Astronomy with GAIA catalog:

https://github.com/pangeo-
data/pangeo/issues/255#issuecomment-427186915

Image processing and visualization

https://medium.com/pangeo/cloud-native-
geoprocessing-of-earth-observation-satellite-data-with-
pangeo-997692d91ca2

http://pangeo.io/use_cases/index.html
https://github.com/pangeo-data/pangeo/issues/255#issuecomment-427186915
https://medium.com/pangeo/cloud-native-geoprocessing-of-earth-observation-satellite-data-with-pangeo-997692d91ca2

Conclusions

• Pangeo ecosystem greatlty facilitates distributed
computing and data analysis at scale

• It changes ways of doing it too

• Non monolithic platform built on top of existing
Scientific Python stack and new related packages

• Community is always here to help
• Dask more versatile and easy to use than Spark.

Conclusion, Useful links

Next steps

• Broaden users and use cases at CNES

• Encourage people to get in touch with Pangeo
community

• Work in cooperation with others (Ongoing with Ifremer
and CLS on SWOT aval data processing)

• Get involved!!

• Pangeo french meeting ont May 23rd

Pangeo wesite and discussions:

https://pangeo.io

https://github.com/pangeo-

data/pangeo/issues

https://medium.com/pangeo

Pangeo Example + Binder:

https://github.com/pangeo-data/pangeo-

example-notebooks

http://binder.pangeo.io/v2/gh/pangeo-

data/pangeo-example-notebooks/master

Dask jobqueue:

https://github.com/dask/dask-jobqueue

Dask simple examples:

https://github.com/dask/dask-examples

My email

Guillaume.Eynard-Bontemps@cnes.fr

https://pangeo.io/
https://github.com/pangeo-data/pangeo/issues
https://medium.com/pangeo
https://github.com/pangeo-data/pangeo-example-notebooks
http://binder.pangeo.io/v2/gh/pangeo-data/pangeo-example-notebooks/master
https://github.com/dask/dask-jobqueue
https://github.com/dask/dask-examples
mailto:Guillaume.Eynard-Bontemps@cnes.fr

Github and binder link :

https://github.com/guillaumeeb/pangeo-tutorial-agu-2018

https://binder.pangeo.io/v2/gh/guillaumeeb/pangeo-tutorial-
agu-2018/some_fixes

Tutorial

Dask only tutorial:

https://github.com/mrocklin/pydata-nyc-2018-tutorial

Other binder resources :

https://github.com/pangeo-data/pangeo-example-notebooks

https://github.com/pangeo-data/pangeo_ocean_examples

https://github.com/dask/dask-examples

https://github.com/guillaumeeb/pangeo-tutorial-agu-2018
https://binder.pangeo.io/v2/gh/guillaumeeb/pangeo-tutorial-agu-2018/some_fixes
https://github.com/mrocklin/pydata-nyc-2018-tutorial
https://github.com/pangeo-data/pangeo-example-notebooks
https://github.com/pangeo-data/pangeo_ocean_examples
https://github.com/dask/dask-examples

