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Chapter 1 : Introduction

1.1 R 7777
This is an extract from “The Comprehensive R Archive Network” home page:

*R is “GNU S”, a freely available language and environment for statistical computing and graphics which
provides a wide variety of statistical and graphical techniques : linear and nonlinear modelling, statistical tests,
time series analysis, classification, clustering, etc. Please consult the R project homepage (www.r-project.org/)
for further information.

CRAN is a network of ftp and web servers around the world that store identical, up-to-date, versions of code
and documentation for R. Please use the CRAN mirror nearest to you to minimize network load.*

On the website mentioned above, R users (useRs!) of any level will find the necessary resources, that is:
installation files, updates, libraries (aka packages), FAQs, newsletters, docs etc.

Why use R:

e Ris free.

e R is increasingly popular and has become the «standard» for data analysis and visualization in many
research areas, both in private and public domains (the figure he below shows the exponential growth
of R libraries downloads since the early 2000s)

e R is powerful and versatile.

e Rprovides endles graphical possibilities.

e The R community.

The reasons to use R are summarised in this phrase by Kan Nishida, taken out of the blog.exploratory.io
site. Well, sort of:

R is like wine, the more you experience it, the more you appreciate what it does, how it does, and why it does.
You might hit the initial learning curve, but after you overcome it, then you start feeling how it is beautifully
and practically designed to address very common challenges of the everyday data analysis.



1.2 First steps on RStudio

RStudio is an interface for R in order to make it friendlier, easier to use. When you open RStudio, R is being
opened in the background as well. Indeed, if you have not installed R, you will not be able to make RStudio
work.

When you open RStudio for the first time, you will find three windows. The main one, on the left, is the
console. This is where all commands will be executed. in a lab analogy, the console is the bench, that is
where you carry out your experiments, where everything works. ..or does not. The > icon you see in the
console is the prompt. When you see it, it means that it is ready for the next command. On the contrary, if
you see +instead, it means that it is waiting for something else. If you want to escape from the +and recover
the prompt, you should press Esc or Ctrl+C.

If we continue with the lab analogy, you’ll need a lab-book. A place where you will write your protocols, the
ones that you will be running at the bench. That lab-book is called the source in the programming world.
You may open your source window in RStudio by clicking on the double-screen icon on the source tab that
you have on the upper side of your screen. Also, you may simply select the File menu, then New file and
finally R script. You can have several scripts open at the same time. The source will include your code,
that is your commands and your comments to the work you will be carrying out. Your code, also called
script, will keep track of your work and, once it has been saved, you, or somebody else, may reopen it and
reproduce your work later on or somewhere else. You can save your code at any time, and we suggest you do
it regularly. You may do so by clicking on the floppy disk icon or by choosing File then Save. Code names
will change colour once they have been saved.

We may all agree that you can improvise at the bench, let that be because you have realized that your
lab-book is incorrect, incomplete, or for whatever reason. However, you need to eventually write those
modifications into the lab-book; otherwise, you will need to improvise every time you go to the bench. The
same is true here, you may well execute everything at the console, but if you leave no trace in the source,
you will be compelled to amend or, worse, to make the same mistake, over and over again. This lack of rigor
would lead to a waste of time and to people not understanding your lab-book.

The commands on the code or script will be executed in the console using the Run button on the upper menu
or, even better, by hitting Ctrl + Enter(Windows) or Cmd + Enter(Mac). You may execute several lines of
your code at once by selecting them on the source window and then executing them as shown.

It is important to note that any line starting with # on your code will be considered a comment and will not
be executed on the console. We may select several lines in the code and convert them into comment lines
using Ctrl+Shift+C (Windows) or Cmd+Shift+C(Mac). Comments are a very important element on any
script, as they will allow you or any other useR going through the code understand the logic of the commands
used in it.

Please note: RStudio allows the use of loads of shortcuts intended to make your life much easier, especially
regarding repetitive actions. I suggest you have a look at the Tools menu. Shortcuts may be modified as
well by the user.

1.3 Working Directory (aka wd)

When you open RStudio, there will be a working directory (or wd) defined by default in your computer: if
you are using Windows OS the default wd is your Documents folder; if you are using a mac OS, your default
wd should be “/Users/yourusername”. The wdis the folder in which all saved objects will be located.

You may know your wd by running getwd(). You are also free to change your it if you wish. There is no
obligation as to how useRs should choose their wd, but we strongly suggest you use at least one wd per project.
This will help you avoid file overwriting and improve traceability. Under RStudio, you may change your wd
from the menu Session -> Set Working Directory. When you do so, you will realize that, in the console,
Rruns the setwd() function (for Set Working Directory). One of the options you'll get in that menu is
setting your wd to the source code location. We strongly suggest using this option.



You may access to the list of the physical files on you wd by running dir() or list.files(). This is equivalent
to using Windows Explorer on Windows or Finder on a Mac. It is also good practice to create subfolders
as you work. You may create one for your data, another one for your outputs etc. You may create subfolders
within your working directory with the dir.create() function. You may actually use it to create any
folder anywhere in your computer, as long as you specify the right relative path to the chosen location. You
may navigate using "./whatever" to go to or to create the subfolder called whatever within your current
directory. Likewise, you may use "../" to go one step higher in the folder architecture from you current
directory.

1.4 R Projects

One way of sticking to good practice and having one directory per project is using the R Projects proposed
by R Studio. This will allow you find yourself at the right working directory every time you open the project
without using the setwd() function. It will also make easier creating sub directories and so on in the folder.
Importantly, if you need to be working on two, or more, projects at the same time, it will make the whole
think much easier: every time you click on a R project, a new R Studio session will be opened where the
working directory will correspond to the directory where the Rproj file is in.

1.5 R workspace or working environment

When you work with R, you will most certainly find yourselves somewhere along the path shown here below.
First, you will have a dataset that you will import into R. From this moment on, the dataset is an R object
under the R environment. You will then use R functions and packages to manipulate and/or analyze it so
that, in the end, you will have created one or several R output objects that, finally, you will export as a pdf,
an image, a table file or whatever suits your object and your goal best.
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All R objects in your R session (let that be datasets, variables, functions you have created, function outcomes
etc.) will conform your workspace). Do not mistake it with the aforementioned working directory (aka
wd), which is the physical place on your computer you are located in. In other words: if you shut down your
R session without saving your workspace, all your R objects in the closed session will be definitely lost. On
the other hand, your working directory will still be there, obviously.



You will be able to list on the console all the objects you have created on your workspace by running
1s(). Your whole workspace, or any object in it individually, may be saved as an .RData file in the wd (or
elsewhere, if you wish, but we suggest you do not so). You may hence save your workspace by running the
save.image() function like this: save.image("myfile.RData"). Likewise, you may load a previously saved
R workspace by running load("filename.RData"). This will load all R objects in you .RData file. If you
want to save a single object from your workspace, the function to be used is save(): save(myobject, file
= "myfile.RData").

From the moment you execute the save() or save.image() functions, the created .RData file will physically
appear on you computer, in the folder you have chosen to save it, most usually your wd.

1.6 The prompt

The use of the prompt, i.e. >, means that everything that you will run in the R console will require that you
use functions, and those functions will have arguments. Therefore, there will not be any pre-established,
mouse-clickable menu for your analysis. In other words, you will not find any menu allowing you to perform
an ANOVA or a PCA, for instance: you will have to run the suitable functions, with your chosen parameters,
by yourself.

Indeed, RStudio interface has made our lives easier in many aspects when using R, but it has not changed
the core logic under R. As a matter of fact, the prompt line is the source of the power and versatility of R.
Pre-established menus restrict choices and hamper versatility. The prompt line will require a time investment
and energy form your part. In return, it will increase dramatically traceability, provide room for adjustment,
and offer nearly unlimited analysis and visualization possibilities.

A function in R is called with its name followed by its arguments enclosed by brackets. If no arguments are
specified, that is in the case where no argument at all is required, the function will be called by its name
followed by empty brackets. If you do not put the brackets and you just execute the name of the function,
then the code of the function itself will be rendered, which in most cases is not useful.

When you are writing your code, a very important feature in R is the # character, which allows to write
comments on your code. Anything written after the # will be interpreted as a comment and will not be
executed as code chunk. Indeed, if you are using RStudio you will realize that as soon as you write #, the
colour of the font changes, thus indicating that what you are about to write will be considered as comment.

1.7 Using libraries (aka packages)

Libraries or packages are groups of functions and/or datasets developed within the R community, allowing to
accomplish specific tasks. In September 2019, the Comprehensive R Archive Network featured 14476 packages.
Since the date of the submission of the first package on the 15th March 2006 until the last submission recorded
for this document on the 26th October 2020, the number of featured packages has grown exponentially (see
the figure below).
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Using a package requires two steps:

1 - Installation: you may use the install.packages() function to retrieve the source codes of the package
and install it on your computer. This will be done only once. However, it is advisable to periodically update
the packages by running update.packages().

2 - Loading: You will use the function library() to load the package you have already installed so that you
may use it during your session. You will need to do so every time you launch R or RStudio. The latter allows
you to load the package by checking out its name in the list of the installed packages provided with the
interface.

You may also get the list of installed packages by running library(). The search() function allows you to
verify the packages that have been loaded. Finally, we can use ls(), specifying the package number given
by search(), in order to know the functions contained in a given package. See below the example with the
package foreign.

RStudio provides easier, ready-to-click menus to load packages etc. (see the Packages tab at the bottom-right
window). You will realize that clicking on a package executes the library() function straight into the console.
However, this will not leave any trace on your code, and this is why we do advise you not to do it, since it is
always a good thing to keep a trace on everything you have done to run your code.

# Installation of the package :

install.packages("alluvial")

# Verify that the package is among the already installed ones:

library()

# Loading the package

library(alluvial)

# Verify that the package is loaded and, hence, its functions ready to be used
search()

When you run 1s() you are looking at what is in that position 1 under search(). That position corresponds
to .GlobalEnv, that is your workspace or working environment. The other positions correspond to the
environments of subsequently loaded packages, and they are not usually touched. Inside those environments



you will find all functions and datasets belonging to corresponding package and that have been loaded when
you execute the library() function. In general, the last loaded package will be at position 2 under search(),
immediately after your current working environment.

# List available functions in the first loaded package.
1s(pos = 2)

It is worth pointing out that the installation of packages featured in the Biology-devoted bioconductor.org
repository might be carried out by using the installation code provided by Bioconductor, as shown here
below for the limma (for Linear Models for Microarray Data) package. Note that the Bioconductor code
proposed here below may not be adapted for R versions below 3.6.

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
biocLite("limma")

A third repository for R packages is GitHub. There are several ways to install packages from GitHub. A
common way to do so is using the install _github function from the remote package. To use it, you will need
to install and load the remotes package first, then.

install.package("remotes")
library(remotes)
install_github('the_nameof_the_package')

1.8 Help

UseRs of all levels are encouraged to seek help in any available way instead of wasting their time trying
to figure something out all by themselves. There are many ways to ask for help, both on and offline. A
thorough view on the ways you may ask for help is given at https://www.r-project.org/help.html and
http://search.r-project.org/.

When you are working on your code and you need information about a particular function, its usage or
its arguments, the first reflex to get help should be to type help(yourfunction) or ?yourfunction, both
rendering identical results, that is the help on the chosen function that the developer provided when he or
she submitted the package. Beware that help() or ? work also off line, since the help pages come with the
package when you install it on your computer. However, they only work as long as the package has not been
only installed on your machine, but also loaded into your workspace.

You may need help on a function whose package you do not remember, or you want to find help of any
function related to a given term, let us say glm. In this case, you will use help.search(“glm”) or ??glm.
This will result in a list of functions whose name contains the glm term, among all packages already installed
on your machine, whether the package has been loaded or not.

help(plot)

?plot

help(plot)
7plot

help.search("plot")
?7plot

help(help.search)
help(help)

Overall, help pages comprise the following headings:

e Description: it defines briefly what the function does
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e Usage: how the function should be used

e Arguments: The parameters that the function accepts, with some explanations on their use.

e Details: Further explanations on the logic behind the function

e Value: Details on the outcome of the function, that is what you are meant to get after using it
e Note

e Authors

o Reference(s)

e See also: Other functions related to the current search

o Examples: Ready-to-use examples, so that the user may get an idea of how it works.

Those headings are, for the most part, mandatory when the developers submit their package to the CRAN
repository. However, some help pages are much more informative than others, depending on developers
willingness.

Google itself is very helpful tool as well. If you write any question on the browser followed by the letter R, such
as “ANOVA R” or “visualization quantitative data R”, Google understands you are referring to the R language
and will duly provide R-related hits. The R community is so strong that it is very likely that somebody has
already asked the same question before you and that somebody has already answered it. If you do not find
the answer to your question, you may ask for it in the right forum. There are very conspicuous internet
forums devoted to useRs seeking for answer for their codes etc., such as StackOverflow, StackExchange or
the Bioconductor support webpage for packages accepted in the Biology-devoted Bioconductor repository.
If the package you are seeking help about does not explicitly mention any forum to address your questions to,
you may always contact the developer of the package.

Chapter 2: Data Structures

In this chapter we will see the main data structures we treat under R and how we handle them.

R language is largely based on the objects that will be created by running functions. There are different data
structures depending on their number of dimensions and the data types they are able to receive. Thus, data
structures might be mono-, bi- or n-dimensional and they will be able to accept either a single kind of data
(homogeneous data) or different kinds of data (heterogeneous data). The table here below summarizes all
that for the most currently used objects in R:

Homogeneous data Heterogeneous data

1-dim vector list
2-dim matrix data.frame
n-dim array

It is worth pointing out that there is no zero-dimensional object under R, that is scalars. Indeed, numbers or
single-word character strings, which might have been considered as scalars, are indeed vectors on length = 1
in R.

2.1 Store a value in a variable

R can be used as a mere calculator.

2+2
2+2%5
(2+2)*5
3%3%3/2
373/2
-10/3
pi



sin (2*pi/3)
sqrt(4) # Any character after "#"" 4is considered as a comment

However, tha main goal of using R, or any other similar working environment, is to store values and analysis
outputs in R objects.

n = 15
n <- 15
5 ->n
N <- 10
(N <- 30) # Creates the object and gives results at the same time
y <- n*6
rm(n)
n
y
<- log(2)

<- cos(10)

+b/a+b#?
a+b)/ (a+ D)
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2.2. Using functions

The objects you will be creating in R will not be, for the most part, the product of simple, straight forward
calculations. For the most part, the objects you will produce will be the result of using R functions.

When you use a function in R, you will need round brackets to contain the arguments to be used with that
function in particular. The arguments in a function might be mandatory or optional. The former must be
made explicit to make the function work. The latter might be omitted and the function will be executed with
the value that was fixed by default by the developers. When you use R, it is strongly advised to be aware
of what the arguments in a function are meant to be used for, including of course the default values of the
optional arguments.

log(2)

?log

exp(1)

log(exp(1))

log(2, base = 2)
log(c(2,4,58), base = 2)
log(50, base = 2)
log2(50)
log(50, base
log10(50)
?logl0
logl0(50, base = 2)
logl10(2);log2(2)

10)



2.3. More than numbers

When using R, you are meant to produce and to use more than numbers. You will certainly create string,
character variables as well as boolean, logical variables. Logical variables are produced in response to questions
requiring boolean reply, which are the only questions you are supossed to ask. Boolean responses correspond
to those questions offering binary and mutually exclusive alternatives, i.e. TRUE or FALSE. Boolean responses
are easily converted, or coerced, into numeric values: TRUE equals to 1, and FALSE equals to O.

There are four ways of asking such questions: == (equal to), !'= (not equal to, or different from), < (smaller
than) or > (bigger than).

9 ==
|

w w

2
2
2

c <- 2==3
d <- 2<3
c +d

Characters go between quotes. Likewise, R is meant to be used with non-numerical variables and objects.
a

a <- "toto"

e <- a

e <- "titi"

e

Within time you will be creating all sorts of objects. You may need to look for them in your workspace.

1s0O

1s.str()

b <- 5

b2 <- b*2

ls(pat = "b")

1s(pat = "bla") # The absences of spaces here surrounding the | s important
ls(pat = "b | a")

acdc <- "back in black"
1s(pat = "bla")

ls(pat = "cld")

1s(pat =""c|~d")

ad <- "toto"
1s(pat="d$")
1s(pat=""c|d$")
1ls(pat=""c" & "d$")

rm("a")

1s0

rm(pat="b") #!!

1s0

rm(list = ls(pat="b"))
1s0)

rm(list=1s())
1s0)



2.2 Vectors

Vectors are one-dimensional objects and they represent the simplest way to store values in a single object.
Indeed, every object we have created so far in this course are vectors because there are not dimension-free
objects in R. There are four main vector types: integer and double for numeric variables, character, and
logical.

Vectors are usually created with the c¢() function, i.e. combine, though this is not the only way to do so.

c(2,3,5,8,4,6)

a <- c(2,3)
c(c(2,3),c(5,8,4),6)
c(a,c(5,8,4),6))
c(1,2,3,4)

Using the column (:) allows creating numeric vectors without using the comma, which is very useful when we
create vectors with a large number of terms. It also allows us getting rid of the ¢() function.

c(1,4)

c(1:4)
c(1:1000)
1:1000

1,4

a <- c(2,3)

b <- c(5,8,4)
c <- c(6)

d <- c(a,b,c)
class(d)

a <- "toto"

d <- c(a,"tata")

d <- c("a","tata")

e <- c("this","is","my","vector")
length(e)

f <- c("this is my vector")
length(f)

Mathematical and boolean operators are evaluated term by term within a vector.

x <- ¢(10,20,30)
X

X * X + 2

X + x % 2

(x +x) * 2
x"2

3*x72

summary (x)
min(x)
max (x)
sum(x)

mean (x)
sd(x)

var (x)
median(x)

10



We can start exploring the use of boolean vectors.

sum (x > 10) # Why?
mean (x > 10) # !!

pvalues <- c(0.2, 0.012, 0.03, 0.94)
fcs <- ¢(2,5,-3,1)

sum(pvalues < 0.05)

(pvalues < 0.05) * fcs

What if you have missing values in your variable.

x[3] <- NA

X

summary (x)

mean(x) # Why?
is.na(x)
sum(is.na(x))
sum(!is.na(x))
mean(is.na(x))
any(is.na(x))
all(is.na(x))

any(x < 10)

all(x < 10)

mean (x)

mean(x, na.rm = TRUE)
(x < 10, na.rm = TRUE)
sum(x < 10)

You may ask at any point what kind of vector you are dealing with. You my even ask whether you are dealing
with a vector. The answer you should expect is, as always, boolean: TRUE or FALSE. And that answer is, of
course, a vector.

is.double(d)
is.integer(d)
is.numeric(d)
is.character(d)
is.logical(d)
is.logical(d)
is.vector(d)
is.numeric(d)
is.null(d)

is.logical(is.character(d))
is.logical(is.numeric(d))
is.logical(d)
is.logical(is.logical(d))
is.vector(is.logical(d))

is.numeric(2)
is.logical (FALSE)
is.logical(T)
is.logical(F)
is.logical ("FALSE")
is.logical ("TRUE")

11



Here is the reason why you should not create variables that are called F or T.
F <- "whatever"
a <- rnorm(10)

b <- rnorm(10)
B
t

.test(a,b, var.equal = F )
.test(a,b, var.equal = FALSE )
rm(F)
t.test(a,b, var.equal = F )

Numeric vectors can be integers or doubles though by default they will be the latter. The diffference
between both will be, for the most part irrelevant in your daily work. However there are certains aspects
that you should bear in mind: integers are precise and doubles are approximations. Have a look at the
following lines:

is.double(2)
as.integer(2)
is.double(2.1263589)
as.integer(2.1263589)
as.integer(2.9263589)

is.double(Inf)
as.integer (Inf)

sqrt(2)°2
sqrt(2)°2 == 2
sqrt(2)°2 - 2
20/3

20/3 == 6.666667

round (20/3, 2)
round(20/3, 6) == 6.666667

x <- ¢(1,2,4)
is.numeric(x)
is.integer(x)
is.double(x)
X
as.integer (x)

x <- c(1L,2L,4L)
is.numeric(x)
is.integer(x)
is.double(x)

x <- ¢(1,2.7,4.3)
is.numeric(x)
is.integer(x)
is.double(x)

bq

as.integer (x)

x <= c¢(1L,2.7L,4.3L)
X

12



is.integer(x)
is.double(x)
as.integer (x)

2.2.1 names in a vector as an attibute

Let us have a look at the notion of attributes of a vector. Attributes are additional information about a
variable, that come out as a 1ist (more about lists later on), and do not modify in any sense the actual
information provided by the variable itself. The most common and widely used attribute of a variable is the
names attribute.

d <- c(23,456)

attributes (d)

f <- c("Luke", "Yoda")

names(d) <- f

d

attributes (d)

attributes(d) $who_are_those <- "My vector only accepts Jedis"
attributes(d)$what_is_this <- "those are the ages of: Yoda is 456 and Luke is 23"
attributes(d)

is.numeric(d)

rm(f)

d

names(d) <- c("Yoda", "Luke")

2.2.2 Vectorisation

We will mention the notion of vectorisation, an important feature in R which is meant to make calculations
easier and faster. Do not worry about the term itself, just see what is going on in the following lines. UseRs
should be aware that vectors are considered, in calculation terms, as column vectors. Even if you see the
elements in a vector displayed horizontally on your screen, this is only for practical reasons. The fact that
vectors are, in fact, column vectors has some implications that we will be looking at further down in the
document.

1:6 + 5

5

c(2,3)

c(2,3,4,5) # Why?

=R e
[o)Be) INe))
* ¥ *

2.2.3 Subset and extract information from a vector

We use [] to subset variables in R, that is extracting elements and information from a variable. We can also
use [1 to modify the variable.

We extract the information from a variable by calling between [] the index or the name of the element(s) in
the variable for which we want to retrieve the information.

ages <- c(17,39,35,54,20,47)
names (ages) <- c("Enzo", "Pierre", "Ana", "Celine", "Yvan", "Lola")

ages|[]

ages [2]
ages[2:4]
ages[c(2,4)]
ages[2,4]
ages[4:2]

13



ages[-2]
ages[c(-2,-3,-4)]
ages[-c(2,3,4)]
ages[-c(2:4)]
ages[-(2:4)]
ages[-2:4] # Why?

We can also choose the elements located where the response to a boolean question is TRUE.

ages < 20
ages[ages < 20]
ages[ages <= 20]
ages [ages == 20]
ages[ages 25]
ages[ages != 54]

which (ages <= 20)
ages[c(1,5)]

20 1]

20 & ages < 50]
20 & ages > 50]
20 | ages > 50]

ages[ages
ages[ages
ages [ages
ages [ages

A AN V V

We can subset a variable calling the names of the elements.

ages["Ana"]
ages[ c("Ana", "Enzo")]

We may pick names with a pattern using grep() and grepl() functions, and I think we should. Both functions
pick terms with the requested string of characters, but they differ in the result they produce: grep() renders
the index of those elements in the variable complying with the requested string whereas grepl() produces a
logical vector, stating whether the elements in the variable comply with the chosen pattern (TRUE) or not
(FALSE).

grep("E", names(ages))
grepl("E", names(ages))

ages[grep("E", names(ages))]
ages[grep("Ele", names(ages))]
ages[grep("n", names(ages))]
ages[grep("a|n", names(ages))]
ages[grep("a.*n", names(ages))]
ages[grep("a.#*n", names(ages))]
ages[grep(""E|a$", names(ages))]

ages [grepl("E", names(ages))]
ages [grepl("E|e", names(ages))]
ages[grepl("n", names(ages))]
ages[grepl("a|n", names(ages))]
ages[grepl("a.*n", names(ages))]
ages[grepl("a.*n", names(ages))]
ages[grepl(""E|a$", names(ages))]

You can obviously subset a variable according to the values of another variable.

14



heights <- c(178,182,165,172,156,194)
names (height
heights[ages > 20]

2.2.4 Sorting information in a vector

We will use two functions to sort the information within a variable: sort() and order(). They may seem
similar and it is almost guaranteed that a new comer to R will mistake them at some point. We will describe
those two functions in the following lines. We will mention also rev(), a somehow related function to those
two. The function sort() renders the requested information in increasing, or decreasing, order. On other
hand, rev() renders the information in a mirror-like reverse manner.

X

sort (x)

sort(x, decreasing = TRUE)

rev(x)
rev(sort(x)) == sort(x, decreasing = TRUE)

You see in those example above that we did not use []. Indeed, we are not subsetting nor extracting any
information from x: we are just displaying the information in the variable in a given order. Indeed, using sort
between [] does not make sense because sort() does not produce index numbers, as the lines here below
will prove.

sort (x)
x[c(17,20,35,39,47,54)]

What sort() does is indeed different from what order() does. The latter does two things, actually: first it
sorts the variable as sort() itself would do, and then it renders the index number at which sorted terms are
located in the variable.

order (x)

x[order (x)]
x[c(2,5,1,3,6,4)]
x[order(x)] == sort(x)

order(x, decreasing = TRUE)
x[order(x, decreasing = TRUE)]
x[order(x, decreasing = TRUE)] == sort(x, decreasing = TRUE)

That is why sort() does not work between []1: it does not produce index. On the contrary, order() produces
index information, thus being useful to subset sorted information between [1. The results of order should be
read as, for instance, “the smallest value of x is the second element of the x vector” or “the highest value of x
is the fourth element of the x vector”. The use of order() might not seem clear at this point, but it will be
clearer when we deal with two-dimensional datasets.

unique() and duplicated() functions are useful to retrieve elements in a variable that might be duplicated
(or not). The output of both functions is different: unique() produces once all elements in a given variable,
beyond any eventual duplication. Hence, the size of the unique() outcome will be smaller than that of the
original variable if there were any duplications.

On the other hand duplicated() will read the variable element by element and will tell us if the current
element has already been read or not. Hence, the outcome of duplicated() is a logical vector with the same
size as the original variable.

a <- 3:5

a <- c(a,4:8)
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a

length(a)
unique(a)
length(unique(a))

duplicated(a)
length(duplicated(a))

2.2.5 Coercion

All elements in a vector must be of the same kind. That is, you can not store, for instance, characters and
numbers in the same vector. Consequently, when we try to combine different kind of data within the same
vector, coercion will be applied so that the vector will be converted into the most flexible type. Vector types
from least to most flexible are: logical, integer, double and character.

In the next code chunk, we will introduce the notion of coercion. This is a very important concept in R and
we are sure it will annoy you at some point when you start coding. That said, it is also a cornerstone of the
language, you will learn to cope with it in due time, and you may be able even to take advantage of it.

Coercion is implemented when the useR tries to stock heterogeneous data in an R object whose structure
does not accept heterogenous data. In this situation, R will accept the input of heterogenous data but the
object will be coerced to be converted to the type of data that is the most flexible one given all data inputs.

The following data types are increasingly flexible: logical, integer (whole numbers), double (numbers
with decimals, for the most part), and character.

x <- ¢(2,5,"toto")
X

summary (x)
is.numeric(x)
is.character(x)

toto <- c(1,FALSE)
c(1,"toto", FALSE)
c("a",1)

c(1,F)

c("a",F)
c("a","F")

F <- pi
c("a",F)
rm (F)
c("a",F)
1 = "1"
2 == "1"
1 == "one
1 == TRUE
-1 < FALSE

"Oone" < 2

""" < 2
"10000000000000000" < 2
IIaH < llbl|

You may force coercion into a perfectly valid and homogeneus vector by using the corresponding
as.thedatatypeIwant() function
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c(0,2,7)
as.character(c(0,2,7)) # ?
as.factor(c(0,2,7))
as.logical(c(0,2,7))

2.2.6 Factors

We should mention now another kind of vector, that is factors. At first sight, factors may look as
character, or even as numeric if we are dealing with sort of numeric scores (as we do with apoptosis or
with the infamous Defcon scale for nuclear menace). However, factors are variables comprising a fixed and
known set of possible values. Indeed, they are used to work with categorical variables, where the expected
and/or the observed values are referred to as levels.

factors are also useful when you want to display character vectors in a non-alphabetical order.

factors can be ordered or unordered and are an important class for statistical analysis and for plotting.

Let us take the following variable
dose_char <- c("low","high","medium","high","low","medium","high")

That variable presents, at least, two issues. 1-We cannot easily tell how many times each identical term in
the variable appears. 2-Sorting that variable does not provide any valuable information.

summary (dose_char)
sort (dose_char)

All those issues may be addressed by simply defining our variable as a factor. That, in itself, will allow us
to count how many timmes each term appears in the variable.

dose_fct <- factor(dose_char)
dose_fct
summary (dose_fct)

The levels in that factor are determined, by default, in alphabetical order. By making explicit the expected
levels in the factor, we can specify the order in which we want them to be consudered. This is important
when producing plots as well as in such statistics methods such as, for instance, ANOVA.

dose_fct <- factor(dose_char, levels = c("low","medium","high"))
dose_fct
summary (dose_=fct)

Sometimes, you may need to specify the order also in quantitative terms because it is meaningful or because it
is required by particular type of analysis. Additionally, specifying the order of the levels allows us to compare
levels.

dose_fct

min(dose_fct) # !! Look at the error message.

dose_fct[2] > dose_fct[1]

dose_fct <- factor(dose_char, levels = c("low","medium","high"),
ordered = TRUE)

dose_fct

min(dose_fct)

dose_fct[2] > dose_fct[1]

That same logic applies when you are dealing with categorical scores that resemble numeric values.

num <- C(4,2’3,1)
num[1] > num[2]
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sum (num)

fct <- factor(num)
fct

min(fct)

fct[1] > fct[2]

fct <- factor(num, ordered = TRUE)
min(fct)

fct[1] > fct[2]

sum(fct)

fct <- factor(num, levels = c(4,1:3))
min(fct)

fct <- factor(num, levels c(4,1:3), ordered = TRUE)
min(fct)

fct[1] > fct[2]

There is a final issue when dealing with categorical variables. You may have expected values for which there
is no actual observations. In our dose_ fct example I may have expected, for instance, observations considered
as placebo. In that case, not having any placebo among our observed values may be a valuable information
in itself. However, our variable does not tell us anything about it. We can sort that out by including those
expected, but not observed, values among our defined levels.

dose_fct <- factor(dose_char, levels = c("placebo","low","medium","high"))
dose_fct
summary (dose_fct)

Defining all putative expected values allows us also to declare as a missing value any observed value that
does not match with any of the expected levels.

bad_fct <- dose_fct
bad_fct[3] <- "not treated"
bad_fct

Let us say that the variable in your dataset is already a factor but you are not happy with the reference level,
that is the level that will be the reference for further statistics analyisis or plotting. You may customize that
with the relevel() function.

relevel(dose_fct, ref = "high")

2.2.7 Vectors with a pattern

We use seq() and rep() to create vectors with a “pattern”, let that pattern be either sequential or
repetitive.

1:10

seq (from = 1, to = 20, by
seq (from = 1, to = 20, by
seq (1, 20, 5)

seq (20, 1, 5)

2)
5)

seq (20, 1, -5)
seq (to = 20, from = 1, 5)
seq (to = 20, 1, 5)
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seq (1, 20, 5)
seq (t = 20, £ =1, 5)

seq (1, 20, by = 5)
seq (1, 20, length.out = 5)

rep (5, times = 10)

rep (5, 10)

rep (10, 5)

rep (c(1,2), 3)

rep (c(1,2), each = 3)

rep (c('wt","mut"), 2)

rep (c("wt","mut"), each = 2)

2.2.8 Vectors with randomized elements: sample()

We should mention at this point the sample(), which allows creating randomized variables, and might
be very useful to simulate data, building learning datasets etc. An important parameter of that function
is replace, which is set to FALSE by default. This means that, in order to make variables with repeated
elements, yuo need to specify replace = TRUE.

sample (10)
sample(3:10)
sample (letters)
sample(c(1,15,-7))
7sample

sample(10, size = 3)

sample(10, 3)

sample(1:5, 10) ## !!

sample(1:5, 10, replace = TRUE)
sample(letters[1:3], 50, replace = TRUE)
sample (c("WT", "KO"), 50, replace = TRUE)

Since sample() produces random results, you will obtain a different result every time you run it. This is
true for every math or statistical procedure requiring randomness, such as kmeans or random forests.

You may fix an otherwise random result by executing set.seed() just before the randomizing command.
set.seed() requires a value as seed argument. Everytime you use the same seed value, you will obtain the
same result. And this should be so on any computer. The result will change if you change the seed value.

sample (10)
sample (10)

set.seed(1)
sample (10)

sample (10)

set.seed(1)
sample (10)

set.seed(2)
sample (10)
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set.seed(2)
sample (10)

Exercise 1

o Execute the lines here below. They show four vectors with different features of ten different people.
heights <- ¢(182,180,171,178,169,176,165,177,168,184)
weights <- ¢(91,81,65,80,66,75,55,73,67,94)
ages <- c(24,33,45,18,57,62,39,42,74,27)
gender <_ C(”M"’”F”’”F”,”M”,”M”,”M”,”F"’”F”’”F”,"M”)
e What kind of vectors are they?

class (heights)
class(weights)
class(ages)
class(gender)

e Convert the “gender” vector into a factor

gender <- factor(gender)

e What is the mean height?
mean(heights)

e What are the heights of those individuals measuring between 170 and 180 c¢m?
heights[heights > 170 & heights < 180]

e What is the proportion of those individuals?
mean(heights > 170 & heights < 180)

e How many people are taller than 180 cm?
sum(heights > 180)
length(heights[heights > 180])
e What is the median weight?
median(weights)
o What is minimum body mass index among those individuals (BMI = masse in kgs divided by the
squared height in meters)

min(weights/ ((heights/100)72))

e Can you create a vector that goes from 1 to 20, including only even numbers?

seq(2,20,2)

e Could you slice the interval between 1 and 20 in nine equally sized slices?

seq(1,20,length.out = 10)

2.3 matrixz

matrix objects allow storing elements in a two-dimensional table, that is with rows and columns. However, all
data in a matrix must be of the same kind. If this is not the case, all elements in the matrix will be coerced
into the most flexible data type. Most often than not, your own two-dimensional dataset will contained in
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data frames rather than matrices (more about data frames, later in the document). The main difference
between matrices and data frames is precisely the fact that the latter can store heterogenous data. However,
there are occasions where you will need to deal with matrices, either because the math analysis you want
to carry out requires so, or because the output of the analysis you have just carried out is matrix. The
code here below shows how to create and manipulate matrix objects. You will not be creating matrices with
the matrix() function very often because, as I stated above, it is more likely that you will be dealing with
matrices that have already been created for you.

set.seed (1)

M1 <- matrix(sample(1:24), ncol = 4)
M1

colnames(M1) <- pasteO('"var.",1:4)
rownames (M1) <- names(ages)

dimnames (M1)

t(M1) # To trnaspose the matriz

set.seed(2)

M2 <- matrix(sample(1:24), ncol = 4)
M2

colnames(M2) <- pasteO('"var.",5:8)
rownames (M2) <- sample(names(ages))

We will briefly mention that, when using matrix(): 1-One may specify the number of columns with ncol, or
the number of rows with nrow. You should not need both. 2-Matrices are filled up columnwise by default.
You can fill them up row-wise by changing the argument byrow to TRUE.

matrix(1:15, ncol = 5)
matrix(1:15, ncol = 5, byrow = T)
matrix(1:15, nc = 5)

matrix(1:15, nr = 3, b = T)
matrix(1:15, nc = 5, nr = 5) # I!!

2.3.1 Matrix subsetting

The main difference with vector subsetting and manipulation is the fact that, with matrices, two indexes are
needed, one for the row and the other one for the columns. Hence, square brackets are used as follows: [row,
column].This way of subsetting is also valid for data frames, as we will see further down

M1[1,3]

M1[,2]

M1[2,]

M1[2:3,2:4]

M1[-1,-c(1,3)]

M1[c(1,3),c(2,4)]

M1
M1[c("Celine","Pierre"),c("var.4","var.2")]
M1[c(3,1),c(4,2)]

When you choose one single row or one single column in a matrix, R will vectorize it by default, meaning that
it will lose its two-dimentional structure and become a vector. This migh be inconveninent in some cases, for
instance when you want to keep the names of that row or column.

M1[,1]

class(M1[,1])

M1[,1, drop = FALSE]
class(M1[,1, drop = FALSE])
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M1[1,]

class(M1[1,])

M1i[1,, drop = FALSE]
class(M1[1,, drop = FALSE])

M1[1,1]

class(M1[1,1])

Mi[1,1, drop = FALSE]
class(M1[1,1, drop = FALSE])

Subsetting can be produced using boolean questions.

M1[M1[,"var.3"] > 10,"var.2"]
M1[M1[,"var.3"] > 10 & Mi[,"var.4"] > 4 ,"var.2"]
M1[M1[,"var.3"] < 10 | Mi[,"var.1"] == 14 ,"var.2"]

M1[M1[,"var.
M1[M1[,"var.
M1[M1[,"var.

"] > 10,"var.2", drop = FALSE]
"] >=5 & M1[,"var.8"] > 4 ,"var.2", drop = FALSE]
"] <10 | Mi[,"var.1"] == 14 ,"var.2", drop = FALSE]

w w w

Dropping is not necessary when we pick more than one row and more than one column because, in such case,
the information can not be vectorized.

M1[M1[,"var.3"] > 10, c("var.1","var.2")]

M1[Mi[,"var.3"] > 10 & Mi[,"var.4"] > 4 , c("var.1","var.2")]
M1[M1[,"var.3"] < 10 | M1[,"var.1"] == 14 , c("var.1","var.2")]

You can obviously subset a given matrix according to what happens in another matrix.
Mi[M2[,"var.7"] >= 5,]

M1[M2[,"var.7"] >= 5 & M2[,"var.8"
M1[M2[,"var.6"] < 10 | M2[,"var.7"

] >4 ,"var.2"]
1 ==1 ,c("var.1", "var.3")]
And you can subset information using grep() and grepl().

Mi[grep("n", rownames(M1)), c(1,4)]
M1[grepl("n", rownames(M1)), c(1,4)]

Mi[-grep("n", rownames(M1)), c(1,4)]
Mi[-grepl("n", rownames(M1)), c(1,4)] # !!
Mi[!grepl("n", rownames(M1)), c(1,4)]

You can bind matrices column-wise and row-wise if they are dimensionally compatible. When you do the
former, be sure that the order of the rows in both matricesis the same, and when you do the latter, you
have to be sure about the variables.

M1

M2

cbind(M1,M2) ## !!!
rbind (M1,M2)

2.3.2 Operating with matrices

Standard operations are executed term by term, as it was the case for vectors.

M1*2
M1 + M2
M1 * M2
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Also, it should be considered the fact that operations are run column-wise. Therefore, we must be aware of
what we are doing to avoid surprises.

Mi*c(1,2)
Mi*c(1:4)
t(A)
t(A)*c(1:4)
Axc(1:5)

We use the %*x%operator in order to produce the matrix product between two compatible matrices: the ncol
of the first must be the same as the nrow of the second, and viceversa.

M1 %% M2
M1 %% t(M2)

The following lines are about the solve() function, which enables resolving matrix equations as well as
inversing matrices. Indeed, solve() provides the x matrix so that a %*% x = b. This operations are very
common in many math and stat procedures, such as PCA, and they will be runnig behind the curtains, many
times without us realizing about it.

a <- matrix(c(3,5,2,4), nrow = 2, ncol = 2)
a

b <- matrix(c(8,2), nrow = 2, ncol = 1)

b

solve(a,b)

In the example above we have that 3x + 2y = 8 and that 5x + 4y = 2. We use solve() to find that x =
14 and y = -17.

The a matrix above must be square (i.e. ncol(a) = nrow(a)), so that you have as many equations to solve
as you have unknown variables. On the other hand, nrow(b) = nrow(a), whereas each column of b proposes
a different result for the equations proposed by a. Hence, the product of solve(), x, will have the same
number of rows as a and b, and as many columns as b, each of the columns being the possible solution for
the equations in a, that is compatible corresponding column in b.

set.seed(1)

a <- matrix(sample(1:9), nrow = 3, ncol = 3)
set.seed (1)
b <- matrix(sample(1:6), nrow = 3, ncol = 2)

solve(a,b)
The inverse of a square matrix a, i.e. a”-1", is a matrix whose matricial product with a produces an identity

matrix, i.e. a matrix whose diagonal present unit numbers, and zeros elsewhere.

?solve()
solve(a)
solve(a, matrix(c(1,0,0,1),ncol=2))

You may realize from above, and taking ito account the a and the identity matrices that if 3x + 2y = 1 and
5x + 4y = 0,thenx = 2andy = -2.5.

On the other hand, when 3x + 2y = O and 6x + 4y = 1, thenx = -1 andy = 1.5.

apply() and its family: an introduction

We will introduce here a very important and useful function, namely apply(). This is the most straight
forward function of a whole family of functions, including lapply (), sapply () and tapply() that you will
certainly use if you continue programming with R, and are introduced later on in this document.
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apply() allows producing results dimension-wise, let that be row- or column-wise. Some shortcut functions
have been created for the most widely used apply() applications.

apply(M1,1,mean) # 1 ts for rows
rowMeans (M1)
class(rowMeans (M1))

apply(M1,2,mean) # 2 <s or columns
colMeans (M1)

apply(M1,1,sum)
rowSums (M1)

apply(M1,1,sd)
apply(M1,2,sd)

You may run any funtion you want to each of those dimensions. When you use more complex of customized
functions, you need to define the function you want to run with function().

apply(M1,1, function(x) mean(x)/sd(x))
apply(M1,2, function(x) mean(x)/sd(x))

We use x as we could use any other term.

apply(M1,1, function(rows) mean(rows)/sd(rows))
apply(M1,2, function(columns) mean(columns)/sd(columns))

In the example above, x is the most widely used notation in that kind of situation. Using rows and columns
notations are used just to try better explain what is going on. In fact, we could have used whatever notation
we wished.

Be careful with this (remember that vectors are indeed column vectors):

var.means <- colMeans(M1)
M1 - var.means # !/!!
t(M1) - var.means
t(t(M1) - var.means)

2.3.4 Missing value actions

We will finish the matrices chapter with some lines about missing values, i.e. NAs. These short lines will
not deal with the issue of missing value imputation, which is a vast statistical issue that deserves a training
course on its own. We will be just having a quick look at how R deals with datasets as soon as it detects
missing values.

M1.NAs <- M1

M1.NAs[4,1] <- NA

M1.NAs[2,4] <- NA

M1.NAs

apply(M1.NAs,1,mean)
apply(M1,1,mean)

apply(M1.NAs,2,mean)
apply(M1,2,mean)

na.omit (M1.NAs)
na.exclude(M1.NAs)

24



na.fail (M1.NAs)

apply(na.omit(M1.NAs),2,mean)
apply(na.omit(M1.NAs),1,mean)

Exercise 2

e Build a matrix M with the heights, the weights and the ages from the previous exercise as variables.

M <- matrix(c(heights, weights, ages), ncol = 3)

o Give names to the three variables in M.

colnames(M) <- c("height", "weight", "age")

o Build the same matrix, with variable names, with just one command.

M <- cbind(heights, weights, ages)

e What is the mean of each of those variable in the matrix?

colMeans (M)
apply(M, 2, mean)

e Can you display now the mean, the median and some other information regarding all variables in M
with just one command?

summary (M)

e Could you calculate the standard deviation for those variables in the matrix?

apply(M,2,sd)

e Can you add the gender to the matrix? What happens when you do so?

toto <- cbind(M, gender.ch)
summary (toto)

tata <- cbind(M, gender)
tata

summary (M)
apply(M,2,mean)

e Calculate the mean height for those individuals heavier than 70 Kg

M <- cbind(heights, weights, ages)
MIM[,"weights"]>70, "heights"]
mean(M[M[, "weights"]>70, "heights"])

e (alculate the mean height and mean age for those individuals heavier than 70 Kg

MMM[, "weights"]>70,c("heights","ages")]
colMeans (M[M[, "weights"]>70,c("heights","ages")])
apply(M[M[, "weights"]>70,c("heights","ages")],2,mean)

2.4 array

array type takes matrix structure to n-dimensions, n being higher than 2. The object H, created might be
represented as a 3-dimentional object (./array_3D.pdf)

25



E <- array(c(1:8, rep(1,8),seq(0,1,1en=8)), dim = c(2,4,3))
help("array") # What entry data type requires the array() function?
class(E)

E[, , 1]

class(E[, , 11)

dim(E)

length (E)

nrow (E)

ncol(E)

E+10

H <- array(1:12,c(2,3,2)) # What does this do?

H

apply(H,1,mean) #*

apply(H,2,mean) #*

apply (H,3,mean) #*

Exercise 3

e What is going on on these three code lines?

apply(H,1,mean)
apply(H,2,mean)
apply(H,3,mean)

Answer:

On the first line, we calculate means by row. The elements of the first row are all those on the top horizontal
slice of H (values: 1,3,5,7,9,11). Likewise, row 2 is the bottom slice of the array (values : 2,4,6,8,10,12).

On the second line means are produced by column, hence the resulting vector is of length 3, corresponding to
the following vertical slices: left - [1,2,7,8], centre - [3,4,9,10] and right - [5,6,11,12].

On the third case, a vector of length 2 is obtained by calculating means on front (values: 1,2,3,4,5,6) and
back (values: 7,8,9,10,11,12) vertical slices.

e Create a 4-dimension array and calculate the sum of all elements in each dimension.

H <- array(1 :24,c(2,3,2,2))
apply(H,1,sum)
apply(H,2, sum)
apply(H2,3, sum)
apply(H2,4,sum)

2.5 list

Objects of type 1list allow storing heterogenous data (numeric, character etc.) in a single, non-structured
object. Being non-structured means, so that data stored in the 1list might be vectors, matrix etc., you
may even a store a list 1ist within a 1list, and so in endless recursive manner! You can visualize a 1list as
a dresser cupboard where every drawer is different from the next one (see the figure below). What you put in
each drawer will be up to you, both in size and in nature.
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list: anything may go in.

Drawer #1: a vector
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Drawer #3: a matrix

OOO0O000
HEE RN NN
COO00000
N NEEEE

Drawer #7: a list, why ﬁ\?\\\
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This is E list are

recursive.

The 1list is a very important object type because of its flexibility. Indeed, many R function outcomes are
lists. Also, you will be creating lists yourself very often when you use loops etc.

2.5.1 Subsetting lists

We may subset lists with [], [[1] or $. If you subset with simple square brackets, in the same way as we
use them with vectors, the result will be a smaller list. Using single square brackets will allow seeing one or
several elements of a list at once, but not manipulating their contents. Using double square brackets you
can subset only one of the components of the list but, on the other hand, you will break the 1ist level of
hierarchy and will gain access to the actual nature and content of the data in the chosen element, and you
will be able to manipulate it.

The use of $ is very handy, even recommended, when the components of the list are named. The output will
be identical to the one you obtain by using with [[1].

If we continue with the dresser analogy, []1 will allow you to identify what is there in the drawer, but they
won’t let you to put your hand in. That is, you will not be able to subset any information within that drawer,
nor make any math with that object in that drawer. However, you will be able to get the regarding more
than one drawers within a single [J. When you use [[]1] or $ you will have access to the object in that
drawer and you will be able to subset it, do maths, etc. On the other hand you will be forced to do so one
element of the list at a time for every [[1] or $.

mylist <- list(matrix = M1,
vector = 1:8,
text = "toto",
score = 8)

list(M1,1:8,"toto",8)
list(toto =
list(toto =

list(toto =
list(toto =
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list()))))

mylist

names (mylist)
mylist[1]

colMeans (mylist[1])
mylist[[1]]

colMeans (mylist [[1]])
mylist[1:2]
mylist[c(1,4)]
mylist[1] + mylist[4]

mylist[[1]] + mylist[[4]]

mylist["matrix"]

mylist[["matrix"]]

mylist[[1]]

mylist$matrix

colMeans (mylist$matrix)

mylist$vector

mylist[[1]] + mylist[[4]] == mylist$matrix + mylist$score

mylist$v

mylist$sc

mylist[c("text","score")]

mylist[c("text","sc")] # It does not work because looking for, literally, "sc" element
mylist$matrix + mylist$sc

Those lines above indicate that the non-ambiguity does not apply under ""
pattern needs to be matched.

. In this case, the exact string

As we said above, using [[1] or $ to subset will give you access to the nature of the data stored in that
element. This means also that you may then subset that element according to its nature. This is not the case
if you use [].

mylist[[1]]
mylist[[1]][1,]
mylist[[1]1][1,][2]
mylist[[1]][1,2]

mylist$matrix[1,]

cos(mylist$sc) + mylist[[2]][3]

cos(mylist$sc) + mylist$v[3]

mylist[1]

mylist[11[1,] # !!

length(mylist) # This tells the number of elements in mylist, whatever those elements are.
length(mylist$vector)

You can easily add a new element to a list. You can do that in two ways, using [[]1] or $. It is straight
forward using the $ if your list elements have names, as it is the case of our x list.

mylist

length(mylist)

names (mylist)

mylist$ten.to.one <- 10:1
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mylist
names (mylist)
length(mylist)

mylist[["alphabet"]] <- letters
names (mylist)

length(mylist)

mylist

These final lines are meant to raise awareness about the use of commas, that is the function they are meant
to modulate.

list(1,2,3,4,5)
list(c(1,2,3,4,5))
list(c(1,2,3,4,5),6)
list(1:5)

as.list(1:5) # !
list("toto",c(1,2,3,4,5))

2.6 data.frame

data frame is a particular data structure, as well as an extremely important one. Indeed, data frame is the
most widely used data structure when dealing with data analysis.

As it happens with the matrix structure, observations appear in rows and variables in columns. The big
difference with a matrix is that a data frame may host, column-wise, heterogeneous data (numeric, character
etc.). A helpful way to think about data frames is to visualize them as a group of vectors organized in
columns, where every vector is a variable containing a distinct data type, which may differ from the data
type in the other columns.

What makes data frames particular then, is the fact that they inherit the main advantages of two data
structures we have already seen, namely matrix and lists. Indeed, data frames keep the well-structured
shape of a matrix object, with rows and columns but, at the same time, data frames accept heterogeneous
data as lists do. In other words, data frame is a singular list where every element is a vector of any
kind and where all elements are of the same length, making it possible to arrange those vector elements in
columns.

When we went through lists, we proposed to visualize them as cupboard dressers. We could use a similar
analogy here. In this case we can visualize as a very widely known shelves (see figure here below), where you
will store one object per pigeon hole. All objects on the same column will be of the same nature, but columns
might independent in nature from one another.
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0 0 ¢

Factor )
Numeric 1
Numeric 2

In the following lines we will see how to create and deal with data frames using the data.frame() function.
This is not the way you will be using most often to create data frames. In fact, most often you will not
be creating data frames; instead, you will find data frames as a result of importing your datasets into R.
Indeed, importing datasets into R will produce, in most cases, data frame objects. This is not the case, for
instance, when you try to build a data frame out of existing vectors using tools such as cbind(), which
renders a matrix.

set.seed (1)
height <- runif(20,150,180) # 20 random values between 150 and 180, taken from the uniform law

set.seed(1)
weight <- runif(20,50,90) # 20 random values between 50 and 90, taken from the uniform law

set.seed(1)
gender <- sample(c("M","F"), 20, replace = T)

set.seed (1)
eyes <- sample(c("blue","black","green","brown"), 20, rep = T)

class(height)
class(weight)
class(gender)
class(eyes)

mydf <- cbind(height,weight,gender,eyes)
class(mydf)

summary (mydf)

summary (mydf)

mydf

That is different from what we obtain using the data.frame() function, obviously. You may use the
stringsAsFactors argument to state if you want character variables to appear as such (default) or as factors
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(stringsAsFactors = TRUE)

mydf <- data.frame(height, weight, gender, eyes)

mydf

summary (mydf)

mydf <- data.frame(height, weight, gender, eyes, stringsAsFactors = TRUE)
mydf

summary (mydf)

2.6.1 Subsetting data frames

Because data frames share features with matrices and lists, we can subset them using [,], [1, [[1],
and $. The ways of implementing them, as well as their advantages and limitations, are (almost) the same
that we have already seen. Let us see a few examples.

mydf [, 1]

mydf [,"height"]

mydf [,grep("h", colnames(mydf))]
mydf [[1]]

mydf$height

mydf$h

There is a slight difference using [] with data frames as compared to lists: using [] with data frames
enables data manipulation, which is not the case with lists.

mydf [1]
class(mydf [1])

mydf [1] + 2 # /!
mydf ["height"] + 2
mydf [["height"]] + 2
mydf$height + 2

mylist[1]
mylist[1] + 2
mylist[[1]] + 2

You may obviously add variables (i.e. columns) to your data frame as you go

set.seed (1)

mydf$score <- factor(sample(1l:4, 20, replace =TRUE))
mydf$BMI <- mydf$weight / (mydf$height/100) 2
summary (mydf)

The use of rownames is deprecated in data frames, and there is a good reason to be so. That said, you
may feel more comfortable with them, especially when carrying out analysis such as trancriptomics etc. As
we have seen with the matrix, you may use the function rownames() in order to create them. When you
import a dataset, oyu will have he choice of doing so with or without rownames and, therefore, you will not
need that function.

rownames (mydf) <- letters([1:20]
mydf

Subsetting rows of a data frame will be done in the same way as we do it with matrices, but the default
outcome will be different in nature: subsetting even a single row from a data frame will still render a data
frame as long as you pick more than one column, which was not the case with matrices. There is a good
reason for that: the data in a row of a data frame is meant to be heterogenous and, therefore, vectorizing it
would imply coercion.
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mydf [1,]

mydf ["a",]
class(mydf["a",])
mydf ["a",1:2]
mydf["a",1]
class(mydf["a",1])

M1[1,]
class(M1[1,])

We can of course combine rows and columns subsetting as we wish, as long as it complies with what we’ve
just specified.

mydf [1,3]

mydf [2:5, "weight"]
mydf$weight [2:5]
mydf$w[2:5]

mydf [["weight"]] [2:5]
mydf ["weight"] [2:5] # /!

mydf [c(1,4),c(2,3)]

mydf [c("a","d"),c("weight","gender")]
mydf [c("d","a"),c("gender","weight")]
mydf [c("m","d") ,c("eyes","height")]

sum(mydf$eyes == '"green") # How many people do have green eyes.
mydf [mydf$eyes == "green", "weight"]
mydf [mydf$eyes == "green", "weight", drop = FALSE]
mydf [mydf$eyes == "green", c("weight","height")]
mydf [mydf$eyes == "green" | mydf$eyes == "brown", "weight"]
mydf [mydf$eyes == "green" | mydf$eyes == "brown", mydf$weight] ## !!
mydf [mydf$eyes == "green" | mydf$eyes == "brown",]$weight
mydf [mydf$eyes == "green" | mydf$eyes == "brown", "weight", drop = FALSE]
mydf [mydf$eyes == "green" | mydf$eyes == "brown", c("eyes", "weight")]
&

mydf [mydf$eyes == "green" & mydf$height > 170, c('"gender", "weight")]

Some of those lines might be hard to code at once when you start with R. Do not hesitate to write commands
ste by step should you wish it. Let us see an example. Let us say I want to know the weight and gender of
those people taller than 170 cm with eye colour different from green.

aux <- mydf [mydf$eyes != "green",]

aux <- aux[aux$height > 170,]

aux <- aux[, c("gender", "weight")]

# In one step:

mydf [mydf$eyes != "green" & mydf$height > 170, c("gender", "weight")]

2.6.2 head() and tail()

head() and tail() are two very useful functions that will show you, by default, the first or the last six elements
of a data set. It can be used with vectors, matrices, lists or data fames. In the case of matrices and
data frames, where those two functions are most useful, they will show the first or the last six rows. The
number of shown elements can be modified.

head (mydf)
tail (mydf)
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head (mydf,2)
tail (mydf,1)

NOTE: You can also verify that nothing is missing from your dataset by checking its dimensions.

nrow(mydf) # The number of rows in your dataset
ncol(mydf) # The number of columns in yor datase
dim(mydf) # The dimenstions of your dataset:
# first the number of rows, then the number of columns

2.6.4 Contingency tables with table()

The table() function, which is used to create contingency or frequency tables between variables in a data
frame is a very useful one.

table (mydf$gender)

table (mydf$eyes)

table (mydf$gender, mydf$eyes)

as.data.frame(table (mydf$gender, mydf$eyes))

summary (as.data.frame(table (mydf$gender, mydf$eyes)))

2.6.5 Combining two datasets with merge()

merge() combines two dataset, in the way recherchev might do it in excel, but reducing to zero the hassle
and the risk of errors. We wiil crete/import two data frames into R that will help us understand how
merge() works.

df1 <- data.frame (name = c("John", "Mary", "Laura", "Robert","Zoe"),
status = ¢ ("married", "single", "married", "single", "married"),
weight = c¢(75,68,48,72,65))

df2 <- data.frame (name = c("Mary", "John", "Robert", "Laura", "Pat"),
status = ¢ ("single", "married", "single", "married", "single"),
height = c(165,182,178,160,173))

or (we will be covering this later on)

dfl <- read.table("./Files/df1l.txt", header = TRUE, sep = "\t")
df2 <- read.table("./Files/df2.txt", header TRUE, sep = "\t")

or going through the File -> Import Dataset -> From text menu in RStudio (more about this later on).

When using merge(), by default: (1) it will look at all columns with the same name in both datasets and will
keep observations with perfect matches for those columns in both datasets, and (2) it will duly arrange and
display distinct information coming from either dataset and corresponding to those common observations.
df1

df2

merge (df1, df2)

merge (df2, df1)

Default features can be modified using the all and the by arguments.

Using all = TRUE will render all possible observations. This means that some observations regarding common
columns in one dataset maight not be matched in the second one, and vice versa, thus generating missing
values in the output
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TRUE)
TRUE)

merge (df1, df2, all
merge (df2, df1, all

You can choose which columns should be taken into account for merging, among those sharing the same
name between both datasets, instead of taking all of them by default. This might be useful when you have,
for instance, two columns with the same name in either dataset, but displaying different information.

df3 <- df2
df3$status = ¢ ("employed", "unemployed", "employed", "unemployed", "employed")
merge (df1,df3)

merge(df1,df3, by
merge (df1,df3, by

”naHle”
"name",all = TRUE)

The by argument might also be useful to detect errors in data sets.

df4 <- df2
df4$name <- dfi$name[1:5] # Here I am inducing a mistake
df4

merge(dfl, df4) # Error in the data sets?
merge(dfl, df4, by = "name") # Inded, status do not match in dfl and df4
merge(dfl, df4, all = TRUE)

2.6.6 Performing groupwise functions with aggregate()

The aggregate() cuts the data frame in distinct groups, allowing then to apply a function on one of the
variables to each of those subgroups.

aggregate (dfi$weight,
by = list (married_single = dfi$status),
FUN = mean)

In the example above, we take df1 and make subgroups according to levels in the status variable. Then we
calculate the mean weight for each of those subgroups. The lines here below are meant to untangle the whole
thing.

mean(dfi$weight [df1$status == "married"])

mean(df1$weight [df1$status == "single"])

We can of course run more complex functions. In such cases, we need to go through the function(x)
operator.

aggregate (dfl$weight,
by = list (married_single = dfi$status),
FUN = function(x) sd(x) / mean(x))

The by argument under aggregate() allows creating subgroups according to more than one variable. That
is why the argument requires a list as input. We will see that with another example dataset. Please import
the genes.df .txt dataset using File -> Import Dataset -> From Text (Base), or running the following
line:

genes.df <- read.table("./Files/genes.df.txt", header = TRUE, sep = "\t")
genes.df

We can calculate the mean of each gene grouped by genotype and treatment. In other words, we will be
calculating the mean of all experimental replicates for every gene.

genel.mean <- aggregate (genes.df$gene.1,
by = list (gtype = genes.df$genotype,
treat = genes.df$treatment),
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FUN = mean)

gene2.mean <- aggregate (genes.df$gene.2,
by = list (gtype = genes.df$genotype,
treat = genes.df$treatment),
FUN = mean)

gene3.mean <- aggregate (genes.df$gene.3,
by = list (gtype = genes.df$genotype,
treat = genes.df$treatment),
FUN = mean)

genel.mean
gene2.mean
gene3.mean

Now, you could merge all results into a single dataframe. The only problem is that all columns in all three
gene mean results display the same number, so that if you run

merge (genel.mean, gene2.mean, gene3.mean)

you will get no results.

There are at least two ways to get it sorted. One of them is to merge according to gtype and treat, but not
x. The other issue is that merge() does not accept more than two data frames as an input, so that you
will need two consecutive mergers in order to get all three genes in.

first.merge <- merge(genel.mean, gene2.mean, by = c("gtype", "treat"))
first.merge
final.merge <- merge(first.merge, gene3.mean, by = c("gtype", "treat"))

In that final .merge, x.x, x.y and x are your mean values for gene.1, gene.2 and gene. 3, respectively. All
you have to do now then is give those columns proper names.

colnames(final .merge) [3:5] <- c("gene.l","gene.2","gene.3")

Of course, things are trickier when you have many more than three variables, but let us stick with that
example by now.

Exercise 4

e We have seen how to build a matrix containing the variables heights, weights, ages and gender, and
we’ve seen what happens because of coercion. What can we do so that what is numeric remains numeric?

df <- data.frame(height = heights,
weight = weights,
age = ages,
gender = gender)
summary (df)

e Add a variable “name” indluding the following information. c("Pierre","Nathalie","Morgane","Enzo","Antoine",

"Jean-Claude","Rachel","Agathe","Marie","Thomas")

df$name <- c("Pierre","Nathalie","Morgane","Enzo","Antoine","Jean-Claude",

"Rachel","Agathe","Marie","Thomas")

e Please arrange the variables so that the names appear first, then the gender, the age and then the rest.
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df[,c(5,1:4)]

df <- df[,c("name","gender","age","height","weight")]
# or

df <- daf[,c(5:1)]

# df[,c(ncol(df),1:(ncol(df)-1))]

e What are the weights of those people taller than 175 cm?

df [df$height > 175,"weight"]
# or
df$weight [df $height > 175]

e Can we have the names of those people as well?

df [df$height > 175,c("name","weight")]

e Build a contingency table telling how many people taller, or shorter, than 175 cm there are per gender.

table(df$gender, df$height > 175)
as.data.frame(table(df$gender, df$height > 175))

e Extract the height of male individuals who are lighter than 75 kg. It is possible to do so with a single
code line (see & operator).

df [df$weight<75 & df$gender=="M",5]
df [df$gender=="M" & df$weight < 75,"height"]
dffheight [df $gender=="M" & df$weight < 75]

toto <- df [df$gender=="M",] # Here I filter male indiv.
toto <- toto[toto$weight < 75,] # Here I filter male indiv lighter than 75Kg
toto <- totol[,"height"] # Here I pick on the heights of those filtered indviduals

e iris is a data frame containing anatomical features of petals and sepals in three different plant species.
Calculate the mean surface of petals and sepals by species, where surface is calculated by multiplying
width and Length. Then create a data.frame, if possible within a single comand line, with Species
names, Petal Surface and Sepal Surface.

iris$Petal.Surface <- iris$Petal.Length * iris$Petal.Width
iris$Sepal.Surface <- iris$Sepal.Length * iris$Sepal.Width

toto <- aggregate (iris$Petal.Surface, by=list (Sp=iris$Species), FUN=mean)
tata <- aggregate (iris$Sepal.Surface, by=list (Sp=iris$Species), FUN=mean)
colnames(toto) [2] <- "petal.m"
colnames(tata) [2] <- "sepal.m"
merge (toto,tata)
# or
iris.surface <- merge(aggregate (iris$Petal.Surface,
by=list (Sp = iris$Species),
FUN = mean),
aggregate (iris$Sepal.Surface,
by=list (Sp = iris$Species),
FUN = mean),
by = "Sp")
colnames(iris.surface) [-1] <- c("petal.m", "sepal.m")

e Explain the names of those variables in the data frame you just obteined. Change “x.x” and “x.y” by
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“Petal.Surface” and “Sepal.Surface”.

colnames(iris.surface) [2:3] <- c("Petal.Surface","Sepal.Surface")

Chapter 3: Data Import / Export

3.1 Dataset import

We tend to use always the same code line when we import a dataset into R. We may use read.table()
function, which is a very old-fashioned function, but still does the job of rendering a data frame. Arguments
such as row.names and header allow taking into account (or not) rownames and headers. Arguments such
as sep and dec allow specifying the nature of column separators and decimal notation.

import_A <- read.table("./Files/import.training.txt",

row.names = 1, header = TRUE, sep = "\t")
import_B <- read.table("./Files/import.training.txt",

header = TRUE, sep = "\t")
import_C <- read.table("./Files/import.training.txt",

header = TRUE, sep = "\t", dec = ",")

head (import_A)
head (import_B)
head (import_C)

class(import_A)
class(import_B)
class (import_C)

summary (import_A)
summary (import_B)
summary (import_C)

str (import_A)
str (import_B)
str (import_C)

Functions such as read.csv() and read.csv2() are just particular cases of that original read.table()
function. The function fread() from the data.table package offers automatic detection of header, separators
and decimal notation with a very time-efficient performance as well.

All that said, R Studio proposes a very handy and efficient menu to import data in R under ‘File > Import
Dataset, which automatically detects decimal notation, separator etc. Please play around with the three
import.training files and see what happens when you execute the import at the prompt.

3.2 Dataset export

We will cover now data export from R, as far as data frames or matrix are concerned (we will deal later
with figure exports). Remarkably enough, RStudio does not offer at the export the same menu it offers at
the import. Thus, functions such as write.table(), write.csv() and write.csv2 may be used. They are
quite similar to the analogous read. .. () functions we have already seen, but a couple of arguments differ
a little: row.names is a logical argument when exporting and numerical when importing, and col.names
replaces header at export.

When you export the data set there are two things that you should consider, similarly to what you do when
importing datasets, namely: what do you want to do with the rows / columns structure and what do you
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want to do with the separator and decimal notations. You usually will want to keep the same row / column
structure you had under R, and will adapt the sep / dec to your own taste.

Let us take the import__A that you have just created with read.table() and put it into write.table() in
order to export it. Beware that, unless you state it otherwise, every exported file will appear in the current
working directory.

?write.table
write.table(import_A, "export_A.xls",

row.names = TRUE, col.names = NA, sep = "\t") # Why col.names = NA?
write.table(import_A, "export_AA.x1s",

row.names = TRUE, col.names = NA, dec = ",", sep = "\t")
write.table(import_B, "export_B.xls",

row.names = FALSE, col.names = TRUE, sep = "\t")

Please, play around with the arguments of that function. Try write.csv() and write.csv2() as well. Finally,
the sink() function allows deriving everything from the console to a text file until you close it using dev.off ().

A <- seq(1,10,1=50)
write.table(A,"A.txt")
sink("Abis.txt")

A

summary (A)

B <- c(1:5)

B

sink ()

A very useful function to export data is the fwrite() from the data.table package. This function works
faster and does not need separator parameter when you write a csv file.

install.packages("data.table")

data.table::fwrite(import.training, file = "exported_ A.txt", sep = "\t")

data.table: :furite(import_A, file = "exported_ Ar.txt", sep = "\t", row.names = TRUE)
data.table: :furite(import_A, file = "exported_A.csv")

Chapter 4: Programming
4.1 Loops

Loops in R are largely implemented with for() or while() functions (though one must be very careful with
the latter cause it may render never ending loops if you do not pay enough attention to your coding). Loops
are very often combined with conditional requests, which are implemented with if() and else() functions or
with the condensed function, ifelse().

It should be noted that, if you are new to coding, loops in R seem to be as painstaking to implement as
unavoidable. With time, you will realize that none of that is true: you will first understand that loops are
actually very easy to grasp and, then, you will start thinking about most efficient ways to code in order to
get rid of them altogether because they might be really time consuming.

Loop removal might be in some cases a trivial affaire. In some other cases, however, loop removal will require
deeper coding knowledge. Indeed, functions such as apply(), lapply(), sapply()or tapply() are meant to
do the job in a much more time-efficient manner than loops. You already know apply(). You will learn
about the others if you continue using R and this is why we introduce them in the 4.2 section.

These examples here below show simple examples of for loops, with or without the conditional postulates
if and else. Bear in mind that, if the loop contains more than one command, then you will need {} to
open and close the loop. Otherwise, only the first command will be executed. RStudio gives you a good hint
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about it with line indentation: if the code line you are writing does not fall at the indentation site you are
expecting, there must be a good reason for it.

for (i in 1:10)
print(1:1i)

for (i in 1:10){
print(1:1i)
}

for (i in 1:10)
print(1:1i)
print(i/2)

for (i in 1:10){
print(1:1i)
print(i/2)

}

for (i in 1:10)
print(1:i); print(i/2)

for (i in seq(10,1,-2))
print(1:1i)

for (i in c¢(1,25,49,5,8))
print (i+1)

The following lines are meant to tell how to prime an empty data structure, that you be progressively filling
up with every loop iteration.

set.seed(1)
alphabet <- sample(1:26)
names (alphabet) <- letters

vocals <- c()
for (i in c(llall’ﬂeﬂ’llill,lloﬂ’”ull))
vocals <- c(vocals, alphabet[i])

# As opposed to:
for (1 in C(”a",”e”,"i",”O”,”u"))
vocals <- c(alphabet[i])

The following line follows the same reasoning, but takes the whole thing a little bit further. We create a
meaningless list where the important thing is to have as many elements in it as iterations we will produce
with our loop. In the example below, we will run an anova (produced with aov()) for every gene in our
genes.df dataset. We will store the results of each anova in a drawer of our “dresser”, i.e. in an element of
our list. We will store those results in an iterative manner, so that the ith element in our list stores the result
of the ith iteration of our loop. The tricky thing here is: we have to by storing the results obtained with the
4th column in our dataset, i.e. our first gene, in the 1st element of our list.

anova.results <- 1list(1,2,3)
for(i in 4:6)
anova.results[[1i-3]] <- summary(aov(genes.df[,i] ~ genotype * treatment, data = genes.df))
# Or:
for(i in 1:3)
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anova.results[[i]] <- summary(aov(genes.df[,i+3] ~ genotype * treatment, data = genes.df))
# Or:
aov.loop <- list(1,2,3)
names (aov.loop) <- colnames(genes.df) [grep("gene",colnames(genes.df))]
for (i in 1:length(aov.loop))
aov.loop[[i]] <- summary(aov(genes.df[,names(aov.loop)[i]] ~ genotype*treatment,
data = genes.df))

4.2 Conditional requests

Conditional requests are implemented with if() and else() functions, or with the condensed function, ifelse().
Conditional requests will produce a given outcome when the leading boolean question is TRUE, and a different
one when the answer is FALSE.

We’ll have a look at a couple of simple examples here below:

x <- rnorm(100) # 100 random numbers from the Normal distribution, where mean = 0.
ifelse(x > 0, "yes", "no")

x <- abs(rnorm(100, mean = 0.05))
ifelse(x < 0.05, "signif", "not signif")

Quite often, if() and else() functions appear embedded in for() loops.
y <= 0
z <=0
compil.x <- c()
for (i in 1:50) {
X <- sample(1:10,1)
if (x > 6) y <= y+1
else z <- z+1
compil.x <- c(compil.x, x)

x <-sample(1:10, replace = TRUE)
v <- 0

for (i in 1:10)

v <- ifelse (x[i] < 5, v+1, v)

4.3 Alternatives to loops

Loops are important when you code, and it is OK if you use them under R. As you make progress with your
coding, you will learn how to implement alternatives to loops. As we have already mentioned, functions such
as apply(), lapply(), sapply()or tapply() are meant to provide loop alternatives. We will introduce them
in this section. Do not get frustrated if you do not grasp all of it at first. Indeed, they are as powerful as
they are subtle, and you may need some time before you fully understand the way they work.

All whateverapply() functions comprise at least two parameters, that is whateverapply(X, FUN, ...).
The X object will be somehow the input reference and FUN will be the function that will be implemented.
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4.3.1 apply()

We have already gone through apply(). This function is meant to avoid loops. See the following two
examples.

iris

head(iris)

class(iris)

mydata <- iris[,-5]

mydata

Let us use a loop to calculate medians and the square root of the mean (don’t ask why) for each species.

medians <- c()

sqrt_means <- c()

for (i in 1:ncol(mydata)){
medians = c(medians, median(mydatal[il]))
sqrt_means = c(sqrt_means, sqrt(mean(mydatal[i]])))

}

medians

sqrt_means

We can avoid that nonsensical loop using apply().

medians <- apply(mydata,2,median)

sqrt_means <- apply(mydata,2, function(x) sqrt(mean(x)))
medians

sqrt_means

4.3.2 lapply()

According to 7lapply, “lapply() returns a list of the same length as X, each element of which being the
result of applying FUN to the corresponding element of it”. Bear in mind that even though the outcome of
lapply () will always be a list, X does not need to be a list.

Thus, look at these three lines, producing the same results.

lapply(1:10, function(x) x*2)
lapply(matrix(1:10,ncol = 2), function(x) x*2)
lapply(as.list(1:10), function(x) x*2)

Because. ..

length(1:10)
length(matrix(1:10,ncol = 2))
length(as.1list(1:10))

All that said, X can be a list

mylist <- 1list(8,
1:10,
c(4,7,25),
matrix(1:30, ncol = 5))
mylist*2
mean(mylist)
lapply(mylist, function(x) x*2)
lapply(mylist, mean)
lapply(1l:length(mylist), mean) #!//
lapply(1:length(mylist), function(x) mean(mylist[[x]1]1))
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mylist2 <- mylist

mylist2[[5]] <- c("Hello, my name is not Donald")

lapply(mylist2, function(x) if (is.numeric(x)) x*2 else x)
lapply(mylist2, function(x) ifelse (is.numeric(x), x*2, x)) ## !!!

4.3.3 sapply()

sapply() works in a similar fashion as lapply(), but it will simplify the result outcome whenever that is
possible, which is not always the case, as we can see in the following example.

lapply(mylist, function(x) x*2)
sapply(mylist, function(x) x*2)

lapply(mylist, mean)
sapply (mylist, mean)

sapply (mylist2, function(x) if (is.numeric(x)) mean(x) else x)
sapply(mylist2, function(x) if (is.numeric(x)) mean(x) else x, simplify = FALSE)
lapply(mylist2, function(x) if (is.numeric(x)) mean(x) else x)

If the simplify argument is set to FALSE, the outcome will present the same structure as a list. If the argument
is set to the default TRUE, the outcome will be wrapped into a vector whenever that is possible.

4.3.4 tapply()

tapply() computes a function on a vector according to the levels of a factor. It is a very powerful and
useful function that may let you avoid not only loops, but also more complex functions such as, for instance,

aggregate().

iris

tapply(iris$Sepal.Length, iris$Species, median)

The alternative to that, using a loop would have been as follows:

sp.medians <- 1list(1,2,3)
for (i in levels(iris$Species))
sp.medians[[i]] <- median(iris[iris$Species == i,"Sepal.Length"])

And the alternative using aggregate()

aggregate(iris$Sepal.Length, by = list(Sp = iris$Species), FUN = median)

Please note the the nature of those thre possible outputs is different: vector, 1list and data frame,
respectively.

Here below, another couple examples on the use of tapply().

tapply (iris$Sepal.Length, iris$Species, function (x) x*2)
tapply(iris$Sepal.Length, iris$Species, function (x) x/mean(iris$Sepal.Length))

You should also be aware of the use of the do.call() function, which will allow you performs a given “function”
within the object you propose as the second argument.

myresult <- tapply(iris$Sepal.Length, iris$Species, function (x) x/mean(iris$Sepal.Length))
do.call("cbind",myresult)

Exercise 5 * What do you think of these lines here below
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a <-cQ
b <- ¢(30,45,60,90)
for (i in 1:length(b)) alil <- cos(b[i])

Answer: That loop is actually pointless

a <- cos(b)

¢ Obtain the equivalent to y and z here below, without any loop.
y<-0
z<-0
for (i in 1:10) {
x<-runif (1)
if (x>0.5) y=y+1
else z<-z+1
}
y

z

Answer

x <- runif (10)
y <- sum(x>0.5)
z <- 10-y

¢ On the example here below, remove the for loops, first on j, then on i.
M <- matrix(1:20, nr = 5, nc = 4)
res = rep(0,5)
for (i in 1:5){

tmp <- 0

for (j in 1:4)

tmp <- tmp + M[i,j]
res[i] <- tmp

}

Answer : j loop removal

for (i in 1:5) res[i]l=sum(M[i,])

i loop removal

res <- apply(M,1,sum)
# ou
res <- rowSums (M)

4.4 Functions

We have been using many functions. Some of them, such as Ist(), c(), exp() or log() are included within
the base R. Furthermore, you will be loading hundreds of new functions as you install and load new packages.
On top of that, you might need to be able to develop and code your own functions, created by yourself, and
this is what we will be talking about in this chapter.

Every function in R, wherever it comes from, is defined by its name and arguments. The arguments of a
function might be mandatory or optional. As for the latter, a default value is proposed when the function is
coded. It should be noted that, for a function to work, it is not mandatory to have mandatory arguments.

The function called function() allows creating a function:
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MyFunction <- function (x) {x+2}
1sQ)

MyFunction

MyFunction()

MyFunction(3)

MyFunction(5)

x <- MyFunction(4)

X

MyFunction.bis <- function (x = 3) {x+2}
MyFunction.bis()
MyFunction.bis(12)

Regarding optional arguments, please note the difference between Function2, Function3 and Function4
here below:

Function2 <- function (a, b=0) {a+b}
Function2 (2,3)

Function2 (5)

Function2 (565)

Function2 (b = 5)

Function2 (5,5)

Function3 <- function (a, b = a) {a+b}
Function3 (2,3)

Function3 (5)

Function3 (5,0)

Function4 <- function (a,b) {a/b}
Function4 (6,2)

Function4 (2)

Function4 (b = 3)

Function4 (b = 3, a = 27)
Function4 (3, 27)

The outcome of function() will correspond to the last line in the source code of function. See an example
here below, and please note the use of a 1ist to render the results of the so called Calcule() function.

Calcule <- function (r) {
p <- 2¥pix*r
a <- pi*r*r
list (radius = r,
perimeter = p,
area = a)}
res <- Calcule (3)
res
res$rad
a # !!
p # !!

The last line in the function determines the outcome of the function.

Calcule.toto <- function (r) {
p <- 2*pix*r
a <- pi*r*r
list (radius = r,
perimeter = p,
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area = a)
print("toto")
}
Calcule.toto()
Calcule.toto(5)

Let us work out another example.

multiply_xy <- function(a, b, c) {
data.frame(mult = a * b,
cat.size = ifelse(a * b < c, "small", "big"))
}
multiply_xy(iris$Sepal.Length, iris$Sepal.Width, 20)

apply(iris[,c(2:4)], 2, function(x) multiply_xy (iris$Sepal.Length, x, 20))
do.call("cbind",apply(iris[,c(2:4)], 2, function(x) multiply_xy (iris$Sepal.Length, x, 20)))

Of course, you may use loops within functions, so that the outcome will depend, for instance, on one or many
conditional requirements. Let us see that with an example.

covid_guideline <- function (fever, headache, cough, diarrhea) {
fever_38 = fever >= 38
if (sum(fever_38, headache, cough, diarrhea) <= 2) {
return ("Stay home and see how it evolves. Let us know if you notice further symptoms")
} else {
return ("You must be tested for the COVID and remain confined")
}
}

covid_guideline(39, 0, 1, 1)
covid_guideline(37.5, 0, 1, 1)
covid_guideline(37.5, FALSE, TRUE, TRUE)
covid_guideline(37.5, FALSE, TRUE, "un peu")

Exercise 6

e Is it mandatory to create a list to render the results of Calcule() ?

Answer: All resulting 3 elements being numeric, a simple vector could suffice.
Calcule <- function (r) {

p <- 2¥pix*r

a <- pi*r*r

c (r, p, a)}
resultat <- Calcule (3)
resultat

e Write a function to calculate the area of a rectangle from side lengths 11 and 12. The function must
equally return the length and the width of the rectangle.

rectangle <- function(11,12){

p = (11+12)%2

a = 11%12

list(width = min(11,12), length = max(11,12), perimeter = p, area = a)}

Using rectangle():
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rectangle(4,6)
rectangle(6,4)
res <- rectangle(8,7)

o What if we decided to make the 12 argument in the rectangle() function optional, with a default value
of 12=11?7 What are the implications?

rectangle.bis <- function(11,12=11){

p = (11+12)%2

a = 11%12

list(width = min(11,12), length = max(11,12), perimeter = p, area = a)l}
rectangle.bis(6)

o Write a function to calculate the n first elements of the Fibonacci sequence (u; = 0;us = 1;u, =
Up—1 + Up—2,n > 2)

fibo <- function(n){
res=rep(0,n)
res[1]=0
res[2]=1
for (i in 3:n) res[i]l=res[i-1]+res[i-2]
res}

e Use that function to calculate the ratio between two consecutive terms in that sequence. Represent
that ratio against the number of elements for n = 20. What do you see?

# The ratio between two consecutive terms of the Fibonaccti sequence tends towards
# the golden ratio (~1.618034)

res <- fibo(20)

ratio <- res[2:20]/res[1:19]

plot(1:19, ratio, type="b")

e Could you please explain the outcome of the code chunk below?

Calcule <- function (r) {
p <- 2*pix*r
a <- pi*r*r
m <- list (radius = r, perimeter = p, area = a)
toto <- letters[r]
return(list(m,toto))}
Calcule(3)

Answer: The function only returns the product of its last line. In this case, the alphabet. And that is
regardless the r parameter.

Chapter 5: Graphics

In this chapter we will focus on some basic graphic features in R. Graphics are one of the strong points
in R, allowing endless possibilities. Moreover, in the last few years there have been great efforts from the
community to build strong and rich resources that provide reproducible, elegant and meaningful graphical
outputs. One of the packages devoted to graphics is ggplot2, which has become sort of the golden standard
in R graphics. This package is part of what its main developer, Hadley Wickham, calls tidyverse, a series of
packages or libraries dealing with data treatment sharing the same grammar and logic. We will be covering
tidyverse in another course that you may consider as a second part to this one.

Here we will be covering basic graphic features because, being beginners as you are supposed to be, we
encourage you to learn producing richer R graphics outputs straight from ggplot2. This chapter will allow
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you to produce quick, relevant graphics on-the-go. In any case, you will grasp the importance of the plot
keyword in R by running help.search("plot").

5.1 Discrete data

Functions such as pie() and barplot(), as is happens with most graphic funtions in R, have a very large
number of argument to modify the appearance of the resulting plot.

vec <- ¢(12,10,7,13,26,16,4,12)
pie(vec)

pie(vec,clockwise = T)

names (vec) <- LETTERS[1:8]
pie(vec)

barplot(vec)

vec2 <- vec*2
plot(vec,vec2)

plot(vec,vec2, col = "red")
plot(vec,vec2, col = 2)
plot(vec,vec2, col = 3)

colors()
plot(vec,vec2, col = "wheat3")

plot(vec,vec2, col = 1:7)
plot(vec,vec2, pch = 17)
plot(vec,vec2, pch = 15)
help(par)

The par (mfrow=c(x,y)) command splits the graphics window into x rows and y columns and includes the
upcoming graphics row by row.

par (mfrow=c(2,2))
help(par)
pie(vec)

barplot (vec)
plot(vec,vec2)
dev.off ()

You may came back to a single-graph layout by executing dev.off () or par (mfrow=c(1,1))

par (mfrow=c(1,1))
barplot(vec,col=1:8)

barplot(vec)
barplot(vec,col=3)

barplot(vec,col=rep(c(2,4),4))
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barplot(vec,col=rep(c(2,4),each = 4))
barplot(vec, col = "white", border = rep(c(2,4),4))
dotchart (vec)

par(bg="lightgrey")
dotchart (vec,pch=16,col=1:8)

dotchart (vec,pch=21,col=1:8)
dotchart (vec,pch=15,co0l=1:8)

par(bg="white")

5.2 Quantitative data

x <- rnorm(50) # Data simulation from a normal law, ?rnorm for more information
boxplot (x)

hist(x)

barplot (x)

stripchart (x)

barplot (x)

iris

class(iris)

summary (iris)
boxplot(iris)

boxplot(iris, las = 2)

boxplot (iris$Sepal.Length)

boxplot(Sepal.Length ~ Species, data = iris)
boxplot(Sepal.Length ~ Species, data = iris, las = 2)
boxplot (Sepal.Length ~ Species, data = iris)
boxplot(Sepal.Length ~ Species, data = iris, col = 2:4)

boxplot(Sepal.Length ~ Species, data = iris, border = 2:4, col = "white")

5.3 Plotting two variables on x and y

In order two plot two variables on x and y, respectively, plot(varl, var2) suffices. We will see here how to
do so, and also how to add extra features to your plot, regardless the function you used to produce, let that
be plot(), boxplot(), hist() etc.

x<-seq(-10,10,1=50)
plot(x,sin(x))
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plot(x,sin(x) ,type="1")
abline(v=0,col="blue",lwd=5,1ty=3)
abline(h=sin(0.7),col=3)
text(-5,-0.5,"whatever" ,font=3)
lines(c(-10,10),c(-1,1),col=2)

help(abline)
help(lines)

The graphical options are listed in the Graphical Parameters section of help(par). The arguments main,xlab,
ylab, sub..., are used to place the legends of the axes and the graph.

par (mfrow=c(1,2))
plot(x,sin(x),type="1",col=1,main="sinus"
plot(x,cos(x),type="b",col=3,xlab="Abscisses")

5.4 Export of graphics

In RStudio, you can use the Ezport tab of the graphic window to export your graphic. However, for the
shake of traceability we would suggest you use the functions associated with saving graphics files: bmp(),
jpeg(), png(), pdf(), postscript(). The procedure to follow is as follows:

1. Create a graphics file to which the graphics output is redirected
2. Draw the graph: the graph does not appear on the screen.
3. Close the file. Don’t forget this step! The graph output will then return to the screen for the next plot.

Those functions will allow you determine figure size and resolution. Also, bear in mind that , whereas png or
jpeg files, for example, will only accept one page per file, pdf format will accept as many pages as you feed
in before closing the file by executing, as always, dev.off ().

png("myboxplot.png")
boxplot(Sepal.Length ~ Species, data = iris, col = 2:4)
dev.off ()

pdf ("mygraphs.pdf")
plot(1:100)

text (20,80, "abcdef")
pie(vec)

dev.off ()

pdf ("iris-boxes.pdf")
for (i in 1:4)

boxplot(iris[[i]] ~ iris$Species, col = 2:4)
dev.off ()

Exercise 7

e Plot the heights vs the weights from the data.frame example. Then make the points be dark blue
squares.

plot(df$height, df$weight, col = 4, pch = 15)
plot(df$height, df$weight, col = 4, pch = 21)
plot(df$height, df$weight, col = 4, pch = 17)
dev.off ()

o Make two plots on the same page using the iris data, showing (1) the histogram of petal length of the
setosa species and (2) the boxplot of sepal length of the virginica species colored in green.
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png("toto.png")
par (mfrow = c(1,2))

hist(iris[iris$Species == "setosa", "Petal.Length"])
boxplot(iris[iris$Species == "setosa", "Sepal.Length"], col = 3)
dev.off ()

« Change the label of the x axis on both plots and put the corresponding Species names.

par (mfrow = c(1,2))

hist(iris[iris$Species == "setosa", "Petal.Length"], xlab = "Setosa", ylab = "whatever")
boxplot(iris[iris$Species == "setosa", "Sepal.Length"], col = 3, xlab = "Virginica")
dev.off ()

Chapter 6: (A very little of) Statistics

The prerequisites for this training course stated that no experience on statistics was required. This chapter will
give you arguments to judge whether we are breaking our promise or not. In any case, we should be reminded
that, according to the r-project website : R is ‘GNU S’, a freely available language and environment for
statistical computing and graphics which provides a wide variety of statistical and graphical techniques : ...

But there is no need to run. The following lines will provide an extremely light insight into R power on
statistics. The statistical power of R is awesome and we do not intend to explore even an infinitesimal part
of it. We will just try to demystify the prompt and give a few arguments as to why menu-driven softwares
might be less convenient than one might think.

Lastly, we will put some emphasis on some aspects regarding inferential statistics, somehow neglecting equally
important topics such as descriptive statistics. If we have reached this chapter during the course, it is because
you have done fine. However, it is certain that we will not have much time left and, therefore, we have taken
the decision here of focusing on what might already be familiar to people not trained in statistics.

6.1 Inferential statistics

We will first create a simulated dataset. Then we will run the most widely known statistical test: the t tests
or Student test.

test.data <- data.frame(x = rnorm(100), y = rnorm(100, mean=1))
t.test(test.data$x,test.datady)
t.test(test.data$x,test.data$y, paired = TRUE, var.equal = TRUE)

We can store the result outcome in an object.

my.outcome = t.test(test.data$x,test.datady)
my.outcome
class(my.outcome)

Description of htest object: This class of objects is returned by functions that perform hypothesis tests (e.g.,
t.test(), wilcoxon.test() etc.), that contain information about the null and alternative hypotheses, the
estimated distribution parameters, the test statistic, the p-value, and (optionally) confidence intervals for
distribution parameters.

names (my . outcome)
my .outcome$p.value
my .outcome$parameter

Why are the degrees of freedom not a whole number? The t.test() function assumes by default that the

variances of both samples are different (var.equal = FALSE). This makes sense because unequal variances
make for a more conservative option that the opposite. Truth is, when variances are different, we cannot
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properly talk about t or Student test, but of Welch test, which is the one that is being performed in this
case with the t.test() function.

Anyhow, the equality of variances can also be tested, for instance with the Fisher test for the equality
of variances.

var.test(test.data$x, test.data$y)
var.test(test.data$x, test.data$y)$p.value

The result of the test does not allow us to accept the alternative hypothesis, i.e. that both variances are not
equal. Hence, we can modify the variance parameter when running the t.test.

t.test(test.data$x, test.datal$y, var.equal=T)

Nullity test of the correlation coefficient: We can also easily test if both variables are correlated.

cor.test(test.data$x, test.data$y)

!! We can also test the normality of the data, for instance with the Kolomogorov-Smirnov test:
ks.test(test.data$x, test.data$y)

Does it make sense to test the normality of the whole dataset, all variables confounded?

7ks.test

ks.test(test.data$x, "pnorm")
ks.test(test.data$y, "pnorm")
mean (test.data$y)
ks.test(test.data$y, "pnorm",1)

I agree that the use of this last argument is not very clear for the non-initiated.
Exercise 8
e Test of Normality: Apply the Shapiro-Wilk test instead of the Kolmogorov-Smirnov test. Look for
the right function to do so.
help.search("shapiro")

The help search tells us that the function that allows us to implement the test is the shapiro.test() function.
To see how to use the function and to test the normality of the x and y variables of the test.data dataset.

help(shapiro.test)
shapiro.test(test.data$x)
shapiro.test(test.data$y)

o Test the correlation between x and y using the Spearman correlation coefficient.

7cor.test
cor.test(test.data$x, test.data$y)
cor.test(test.data$x, test.data$y, method="spearman")

6.2 Descriptive statistics and some graphics

Here we return in part to the graphs for quantitative data discussed in previous chapters.

x <- runif (100)

y <- runif(100)

mean (x) ;var (x) ;sd(x)
min(x) ;max(x)
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?quantile

quantile(x) ;median(x)
quantile(x,0.5)
quantile(x,0.9)

The boxplot() and hist() functions may not produce a graph (option plot=FALSE).

The stem() function produces a stem-and-leaf diagram (stem and leaf) which gives a more “rustic” view of
the distribution of data than a histogram, though the information it gives might be highly explanatory.

The hist() function provides options to change the appearance of the histogram.

boxplot (x)
hist(x)

boxplot (x,plot=FALSE)
cor(x,y)
cor(x,y,method="spearman")
stem(x)

stem(y)

x[25]=2

res=boxplot (x)

res
hist (x)

x[25]=runif (1)
hist(x,density=10)

hist(x,plot=FALSE)
hist(x,nclass=5)
Exercise 9

o Calculate some statistical indicators for a sample of length 1000 drawn randomly according to a normal
distribution of mean 10 and variance 25. Perform some basic graphs with it.

x2 <- rnorm(1000,mean=10,sd=5)
summary (x2) ;boxplot (x2) ;hist (x2)

e Do the same with the following vector
x3 <- c(rnorm(500,5,1) ,rnorm(500,10,1))

e What is the particularity of this new vector, x37

Answer:

summary (x3)
boxplot (x3)

hist(x3)

The distribution of the x3 vector clearly shows a bi-modality. It is visible on the histogram, but not on the
boxplot.

6.3 Linear regression and ANOVA

Student test compares the means of two samples, or just of one sample compared to an expected mean. When
more samples are involved and/or when different factors must be considered (genotype and treatment, for
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instance), then it is likely we will perform a regression and an ANOVA.

head(cars)
cars.lm <- Im(dist ~ speed, data=cars)
summary (cars.1lm)

Let us draw all that.

plot(cars)
abline(cars.1lm)

plot(cars, ylim = c(-20, 120), xlim = c(0,25))
abline(cars.lm)

That summary gives a lot of information and the following paragraph will tell about it. We will focus on
some of the indicators on the Coefficients part.

The first column on the Coefficients matrix tells us about the Estimates of the linear regression, that is,
the intercept and the slope of the model: y = -17.58 + 3.93xx, which is the same as dist = -17.58 +
3.93xspeed. The units of speed and dist being, respectively, miles per hour and feet, the slope of the line,
i.e. 3.93, tells us that for every m/h speed is increased, the distance to stop de the car increases in 3.93 feet.
The Std. Error columns tells about the robustness of the afore mentioned Estimates. The calculation of
that Std Error is a rather complex one to be explained here (or anywhere, to tell the truth). The t value
quantifies how many standard errors our coefficient estimate is far away from 0, and it is calculated by
multiplying the Esimate by the Std. Error. The higher it is, the further the Estimate is away from 0. And
lastly, Pr is the Probability of getting such a (o more extreme) t value. Low Pr equals to low p-value, equals
low probability of your Estimate being zero. The last three lines in the Summary are highly explanatory.
The Multiple R-squared number tells us that 65% percentage of the total variability in the distance might
be explained by the speed. That is, speed does not explain everything, but it explains a big deal nonetheless.
In fact, that last line, the one reflecting on the F-statistic and its p-value tells us how well speed predicts
distance. The low p-value indicates that speed explains distance much better that the null model, that is
the one where speed des not play any influence on distance, that is the mean value of distance. That F
statistic and its p-value is what you obtain when you run an ANOVA.

anova(lm(dist ~ speed, data=cars))
aov(dist ~ speed, data=cars)
summary (aov(dist ~ speed, data=cars))

Exercise 10

o In the light of the following image, could you please interpret what the code below tells.
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Call:
Im(formula = Petal.Length ~ Species, data = iris)

Residuals:
Min 1Q Median 3Q Max
-1.260 -0.258 0.038 0.240 1.348

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 1.46200 0.060860 24.02 <Z2e-1lb ***
Speciesversicolor 2.79800 0.08607 32.51 <2e-16 ***
Speciesvirginica 4.09000 0.080607 47.52 <2e-1b ***

Signif. codes: @ ‘***’ @.901 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1

Residual standard error: 0.4303 on 147 degrees of freedom
Multiple R-squared: 0.9414, Adjusted R-squared: 0.9406
F-statistic: 1180 on 2 and 147 DF, p-value: < 2.2e-16

summary (lm(Petal.Length~Species, data = iris))
anova(lm(Petal.Length~Species, data = iris))

Answer:

R chooses in alphabetical order the Species which will play the role of Intercept, i.e. setosa. Choosing in
alphabetical order does not change the results and can be circumvented. We see that, according to the model,
for every unit the setosa petal length increases, the versicolor petal increases 2.798 units and wvirginica’s 4.09.
All Estimates associated with every species are highly significant. Besides, Species alone explains 94% of the
variability in Petal Length. Finally, as expected by all we have just outlined, the ANOVA tells us that the
Species effect is highly significant when talking about petal length.

Chapter 7: Tidy data

In the last few years, a bunch of R developers have put a lot of emphasis on data tidiness and graphic syntax
and grammar. The main developer in this current is Hadley Wickham, who has created a whole bunch of
libraries, now grouped under the tidyverse name, that have greatly modified the way we code and make
graphics in R nowadays. This last mini chapter is not intended to explain in detail what tidyverse is about.
We will just propose to have a look at a tidy COVID dataset, which is ready for tidy graphics on ggplot2.

library(tidycovid19)
remotes::install_github("joachim-gassen/tidycovid19")
library(tidycovid19)

library(zoo)

library (knitr)

merged <- download_merged_data()
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df <- tidycovidl19_variable_definitions %>%
select (var_name, var_def)
kable(df) %>’ kableExtra::kable_styling()

merged

mydata <- merged %>’

filter(country == "United States") %>%
fill(total_tests) %>%
mutate (

new_cases = confirmed - lag(confirmed),
ave_new_cases = rollmean(new_cases, 7, na.pad=TRUE, align=”right"),
new_tests = total_tests - lag(total_tests)

) h>h

filter(!is.na(new_cases), !is.na(ave_new_cases))

ggplot(mydata, aes(x = date)) +
geom_bar (aes(y = new_cases), stat = "identity", fill = "lightblue") +
geom_line(aes(y = ave_new_cases), color ="red") +
geom_line(data = mydata %>
filter(!is.na(new_tests) ,new_tests != 0), aes(y = new_tests), color ="blue") +
theme_minimal ()
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