
Patchwork
The New Testament

David Rengel

6th of July, 2021

INTRO
patchwork is a ggplot2 extension developed by Thomas Lin Pendersen that is devoted to arrange and
compose muti-panel figures with independent plots produced by ggplot2. For all of you who might not be
totally familiar with ggplot2 and its jargon, let us first clarify what a ggplot2 extension is. Indeed, Hadley
Wickham has long considered ggplot2 a finished project, big and complete enough as it is. At this point, he
just implements minor features and improvements to the library. The so called ggplot2 extensions are just
packages that work within the same logic as ggplot2 in order to complement it, and they are not meant to be
used in a stand-alone manner. These numerous extensions are sometimes niche-specific libraries developed by
specialists, but very often they provide invaluable tools for the overall community by pushing the already
large boundaries of ggplot2. Moreover, those extensions can be combined with each other so that possibilities
are countless. The site http://exts.ggplot2.tidyverse.org/ curates all those extensions and it is a very
handy place to start exploring the universe beyond ggplot2.

If you feel interested by patchwork, I suggest you visit its website (patchwork.data-imaginist.com/). A good
deal of what I have put in this document is inspired by the patchwork guides and vignettes. Also, Thomas
produced two interesting live webinars about ggplot2 during the 2020 confinement, the second one being
about extensions, including patchwork. Both webinars can be easily found in YouTube.

FIRST STEPS
For a start, we will create a few plots with ggplot2. These are meaningless plots that are intended to be used
for teaching purposes only.
p1 <- ggplot(iris) +

geom_boxplot(aes(y = Sepal.Length, x = Species, fill = Species)) +
ggtitle('Plot 1') +
theme_bw()

p2 <- ggplot(msleep) +
geom_bar(aes(y = vore, fill = vore)) +
ggtitle('Plot 2') +
theme_bw()

p3 <- ggplot(msleep) +
geom_point(aes(x = bodywt, y = sleep_total, colour = log10(bodywt)),

size = 3, alpha = 0.7) +
ggtitle('Plot 3') +
scale_x_log10() +
theme_bw()

1

p4 <- ggplot(mtcars, aes(mpg, disp, size = cyl)) +
geom_point(alpha = 0.7) +
ggtitle('Plot 4') +
geom_smooth(show.legend = FALSE) +
theme_bw()

p1
p2
p3
p4

We Combine those plots with patchwork using the well-known + operator.
p1 + p2

We may then start messing with it. We’ll start by changing the plot titles. Beware the difference when using
& instead of +
p1 + labs(title = "This is my first plot") + p2
p1 + p2 + labs (title = "This is my second plot")
p1 + p2 & labs (title = "Same title for all plots")

We can proceed in the same way with the subtitles.
p1 + labs(subtitle = "This is my first plot") + p2
p1 + labs(subtitle = "This is my first plot") +

p2 + labs (subtitle = "This is my last plot")
p1 + p2 & labs (subtitle = "Same subtitle for everyone")

Using + to add plots together might be natural and intuitive, but wrap_plots() does the same thing and
might be more interesting when we use a whole list of plots, for instance.
p1 + p2 + p3 + p4
wrap_plots(p1, p2, p3, p4)
plot.list <- list(p1, p2, p3, p4)
wrap_plots(plot.list)

CREATING LAYOUTS
We can choose the order and the layout in which the plots are added
p1 + p2 + p3 + p4
p1 + p2 + p3 + p4 + plot_layout(byrow = FALSE)
p1 + p2 + p3 + p4 + plot_layout(ncol = 1)
p1 + p2 + p3 + p4 + plot_layout(nrow = 3)
p1 + p2 + p3 + p4 + plot_layout(nrow = 3, byrow = FALSE)

The chunks here below produces exactly the same plots as the chunk above, but using wrap_plots() instead.
wrap_plots(p1, p2, p3, p4)
wrap_plots(p1, p2, p3, p4, byrow = FALSE)
wrap_plots(p1, p2, p3, p4, ncol = 1)
wrap_plots(p1, p2, p3, p4, nrow = 3)
wrap_plots(p1, p2, p3, p4, nrow = 3, byrow = FALSE)

wrap_plots(plot.list)
wrap_plots(plot.list, byrow = FALSE)

2

wrap_plots(plot.list, ncol = 1)
wrap_plots(plot.list, nrow = 3)
wrap_plots(plot.list, nrow = 3, byrow = FALSE)

The / and | symbols combine plots horizontally and vertically.
p1 + p2 + p3 + plot_layout(ncol = 1)
produces the same result as
p1 / p2 / p3
p1 | p2 | p3

Use brackets to group plots in a given zone. I have not completely grasped yet what the results are in some
cases. But it is quite easy and intuitive to try on until you find the right layout.
(p1 | p2) / p3
p1 | (p2 / p3)
p1 | p2 / p3
p1 / p2 | p3
p1 / (p2 | p3)
(p1 / p2) | p3
(p1 | (p2 / p3)) + p4 # ??
(p1 | (p2 / p3)) | p4 # ??

MESSING AROUND WITH GUIDES AND ANNOTATIONS
Legends can be moved around, and also collected. Plot compositions can also be annotated.
p1 | p2 / p3 + theme(legend.position = 'bottom')
(p1 | p2 + theme(legend.position = 'bottom')) / p3
(p1 | p2 + theme(legend.position = 'bottom')) / p3 + theme(legend.position = 'none')
(p1 | p2) / p3 & theme(legend.position = 'bottom')
(p1 | p2) / p3 + plot_layout(guides = 'collect')
(p1 | p2) / p3 & plot_layout(guides = 'collect') # !!

(p1 | p2) / p3 + plot_layout(guides = 'collect') +
plot_annotation(title = 'This is the title for my figure')

We can also create an area where we can explicitely place the legends
p1 + p2 + p3 + guide_area()
p1 + p2 + p3 + guide_area() + plot_layout(guides = 'collect',)
p1 + p2 + p3 + guide_area() + plot_layout(guides = 'collect',) &

theme(legend.direction = 'horizontal')
p1 + p2 + p3 + guide_area() + plot_layout(guides = 'collect',) &

theme(legend.box = 'horizontal')

Plot compositions can also be stored as an object
p_all <- (p1 | p2) / p3 + plot_layout(guides = 'collect')
p_all[[1]]
p_all[[2]]

Actual plots have different sizes depending on the use, or not, of legends. You may align actual plot sizes
when some have legends and some other do not.
p1_bis <- p1 + theme(legend.position = "none")
p1_bis

3

p3
p3_dims <- get_dim(p3)
p3_dims
p1_aligned <- set_dim(p1_bis, p3_dims)
p1_aligned
p1_bis
p3 + p1_aligned ## !!! ???

plots_aligned <- align_patches(p1_bis, p2, p3, p4)
wrap_plots(plots_aligned, ncol = 2) ## This gives an error.
plots_aligned[[1]] + plots_aligned[[2]] ## This gives an error.

We can annotate plots, order them etc.
p_all <- (p1 | p2) / p3 + plot_layout(guides = 'collect')
p_all + plot_annotation(title = 'This is my composition',tag_levels = 'A')
p_all + plot_annotation(title = 'This is my composition',tag_levels = '1')
p_all + plot_annotation(title = 'This is my composition',tag_levels = 'i')
p_all + plot_annotation(title = 'This is my composition',tag_levels = 'I')

p_all + plot_annotation(title = 'This is my composition',tag_levels = 'A') &
theme(plot.tag = element_text(size = 8))

p_all + plot_annotation(title = 'This is my composition',tag_levels = 'A') +
theme(plot.tag = element_text(size = 24))

Add multilevel tagging to nested layouts
p_all
p_all.bis <- p_all + plot_annotation(tag_levels = 'I')
p_all.bis
p_all.bis[[1]] <- p_all.bis[[1]] + plot_layout(tag_level = 'new')
p_all.bis

p_all.bis + plot_annotation(tag_levels = c('A', '1'))
p_all.bis + plot_annotation(tag_levels = list('A',c('&', '%')))
p_all.bis + plot_annotation(tag_levels = list(c('#', 'whatever'), '1'))

(p1 | p2) / (p3 | p4) + plot_layout(tag_level = 'new') +
plot_annotation(tag_levels = list('A','1')) # No use

(p1 | p2) / ((p3 | p4) + plot_layout(tag_level = 'new')) +
plot_annotation(tag_levels = list('A','1'))

((p1 | p2) +
plot_layout(tag_level = 'new')) /

((p3 | p4) + plot_layout(tag_level = 'new')) +
plot_annotation(tag_levels = list('A','1'))

Add prefix and suffix to the tags.
p_all + plot_annotation(tag_levels = 'A')
p_all +

plot_annotation(tag_levels = 'A',
tag_prefix = 'Fig. ',
tag_sep = '.',

4

tag_suffix = ':')

p_all.bis
p_all.bis +

plot_annotation(tag_levels = c('A', '1'),
tag_prefix = 'Fig. ',
tag_sep = '.',
tag_suffix = ':')

Finally, you can move around the tags, modify sizes, texture etc.
p_all.bis +

plot_annotation(tag_levels = c('A', '1'),
tag_prefix = 'Fig. ',tag_sep = '.',
tag_suffix = ':') &

theme(plot.tag.position = c(0, 1),
plot.tag = element_text(size = 8, hjust = 0, vjust = 0))

p_all.bis +
plot_annotation(tag_levels = c('A', '1'),

tag_prefix = 'Fig. ',
tag_sep = '.',
tag_suffix = ':') &

theme(plot.tag.position = c(0, 0),
plot.tag = element_text(size = 12, hjust = 0, vjust = 0))

p_all.bis +
plot_annotation(tag_levels = c('A', '1'),

tag_prefix = 'Fig. ',
tag_sep = '.',
tag_suffix = ':') &

theme(plot.tag.position = c(0.5, 1),
plot.tag = element_text(size = 12, hjust = 0, vjust = 0))

p_all.bis +
plot_annotation(tag_levels = c('A', '1'),

tag_prefix = 'Fig. ',
tag_sep = '.', tag_suffix = ':') &

theme(plot.tag.position = c(0.5, 1),
plot.tag = element_text(size = 12, hjust = 0, vjust = 0, face = "bold"))

TUNING LAYOUTS
Use plot_spacer() to create a gap, a sort of void plot.
p1 + plot_spacer() + p2 + plot_spacer() + p3 + plot_spacer()
p1 + plot_spacer() + p2 + plot_spacer() + p3

p1 + p2 + plot_spacer() + p3 + plot_spacer()

5

p1 + p2 + plot_spacer() + p3

(p1 + plot_spacer() + p2) / (plot_spacer() + p3 + plot_spacer())

Patchwork will assign by default the same amount of space to each plot by default, but this can be tuned
with the widths and heights argument in plot_layout(). This can take a numeric vector giving their relative
sizes (e.g. c(2, 1) will make the first plot twice as big as the second).
p1 + p2 + p3 + p4 +

plot_layout(widths = c(2, 1))
p1 + p2 + p3 + p4 +

plot_layout(widths = c(2, 1), guides = 'collect')

p1 + p2 + p3 + plot_layout(widths = c(1,2,1))
p1 + p2 + p3 + plot_layout(widths = c(1,3,1))
p1 + p2 + p3 + plot_layout(widths = c(1,3,1)) & theme(legend.position = 'none')
p1 + p2 + p3 + plot_layout(widths = c(1,3,1)) + plot_layout(guides = 'collect')

p1 + p2 + p3 + p4 +
plot_layout(widths = c(2, 1), heights = c(1, 3), guides = 'collect')

When grid sizes are given as a plain numeric, it will define the relative sizing of the panels, as shown above.
It is also possible to supply a unit vector instead:
p1 + p2 + p3 + p4 +

plot_layout(widths = c(2, 1), heights = unit(c(5, 1), c('cm', 'null')))
p1 + p2 + p3 + p4 +

plot_layout(widths = c(2, 1), heights = unit(c(5, 1859), c('cm', 'null'))) # !!
p1 + p2 + p3 + p4 +

plot_layout(widths = c(2, 1),
heights = unit(c(12, 58945), c('cm', 'null')),
guides = 'collect') # !!

p1 + p2 + p3 + p4 +
plot_layout(widths = c(2, 1),

heights = unit(c(12, 1), c('cm', 'null')),
guides = 'collect')

In the first line of the previous chunk, the first row of the arrangement will always occupy 5cm, while the
second will expand to fill the remaining area.

Patchwork contains many features for fine tuning the layout and annotation. Very complex layouts can be
obtained by providing a design specification to the design argument in plot_layout(). The design can be
defined as a textual, as follows:
layout <-
"AA#
#BB
C##"

p1 + p2 + p3 + plot_layout(design = layout)
p1 + p2 + p3 + plot_layout(design = layout, guides = 'collect')

That is quite a powerful tool. That said, be careful to execute the layout-defining code lines in one go.
Otherwise, funny results might be produced. Let us see another layout examples.
layout <-
"AABB
#CC#"

6

p1 + p2 + p3 + plot_layout(design = layout, guides = 'collect')

layout <-
"AAAB
#CC#"

p1 + p2 + p3 + plot_layout(design = layout, guides = 'collect')

layout <-
"AAAB
CCCC"

p1 + p2 + p3 + plot_layout(design = layout, guides = 'collect')

Importantly, plots are located in the composiiton according to alphanumerical order of layout levels, no
matter the characters you use to define such levels
layout <-
"BB#
#CC
A##"

p1 + p2 + p3 + plot_layout(design = layout, guides = 'collect')

layout <-
"11#
#CC
A##"

p1 + p2 + p3 + plot_layout(design = layout, guides = 'collect')

layout <-
"11AA
#CC#
22##"

p1 + p2 + p3 + p4 + plot_layout(design = layout, guides = 'collect')

layout <- "
##BBBB
AACCDD
##CCDD
"
p1 + p2 + p3 + p4 + plot_layout(design = layout, guides = 'collect')

Layouts cans also be built in a more programmatic fashion using the area() constructor. I find it is not that
easy to grasp at first, but you can always plot your layout so you can understand what you are doing. The
following two layouts are equivalent. You cans use plot(layout) when using area(t, l, b = t, r = l),
so that you have an exact idea about what is going on.
layout <- "
A#B
##B
CCB
"
p1 + p2 + p3 + plot_layout(design = layout)

layout <- c(
area(1, 1),
area(1, 3, 3),

7

area(3, 1, 3, 2)
)
p1 + p2 + p3 + plot_layout(design = layout)

plot(layout)

A great advantage of using area() is that it easily allows you to superpose plots. We will create two extra
plots with the mtcars dataset to illustrate the example.
p5 <- ggplot(mtcars) +

geom_point(aes(mpg, disp)) +
ggtitle('Plot 5')

p6 <- ggplot(mtcars) +
geom_boxplot(aes(gear, disp, group = gear)) +
ggtitle('Plot 6')

layout <- c(
area(t = 2, l = 1, b = 5, r = 4),
area(t = 1, l = 3, b = 3, r = 5)

)
p5 + p6 +

plot_layout(design = layout)

plot(layout)

Another approach to overlap plots is to use the inset_element() function which marks a plot or graphic
object to be placed as an inset on the previous plot. It will thus not take up a slot in the provided layout,
but share the slot with the previous plot.
p5 + inset_element(p6, left = 0.6, bottom = 0.6, right = 1, top = 1)
p5 + inset_element(p6, left = 0.4, bottom = 0.6, right = 1, top = 1)
p5 + inset_element(p6, left = 0.45, bottom = 0.5, right = 0.95, top = 0.95)

8

	INTRO
	FIRST STEPS
	CREATING LAYOUTS
	MESSING AROUND WITH GUIDES AND ANNOTATIONS
	TUNING LAYOUTS

