
tidyverse
The New Testament

David Rengel @IPBS

March 2022

You need to intall the the libraries here below to follow this document. Once you have install them you will
need to load them.
install.packages("tidyverse")
install.packages("gridExtra")
install.packages("nycflights13")
install.packages("png")
install.packages("grid")
install.packages("RColorBrewer")
install.packages("patchwork")
install.packages("zoo")
install.packages("ggrepel")
install.packages("readxl")
install.packages("gghalves")
install.packages("maps")
install.packages("mapdata")
install.packages("ggmap")
install.packages("viridis")

library(tidyverse)
library(gridExtra)
library(nycflights13)
library(png)
library(grid)
library(RColorBrewer)
library(patchwork)
library(zoo)
library(ggrepel)
library(readxl)
library(gghalves)
library(maps)
library(mapdata)
library(ggmap)
library(viridis)

1

1. INTRO
This document is a brief introduction to tidyverse, “an opinionated collection of R packages designed for data
science” (tidyverse.org). We provocatively subtitle this document The New Testament, in contrast to what we
called the document for beginners, i.e. The Old Testament. This is because implements a whole new grammar
to give way to a determined manner of thinking data treatment and visualization. People who have used R
in the old way and are willing to explore the tidyverse world encounter some difficulties to adapt themselves.
However, learning tidyverse from scratch is easier than that, and it suits perfectly people who are new to R.
We have mentioned the Old Testament and the New Testament; if we want to pursue the joke, then we need
a messiah, and that has to be Hadley Wickham. He is the main developer behind tidyverse; he is also
Adjunct Professor of Statistics at the Auckland, Stanford and Rice Universities, Chief scientist at RStudio
and, with no doubt, the most successful R developer nowadays. Hadley Wickham is an adamant defender of
data tidiness or, at least, of what he thinks tidy data should look like. As it happens, his idea of tidy data
is well adapted to data science and it opens huge possibilities in data treatment and visualization (§).

tidyverse is a metapackage since it is the compilation of several packages sharing the same logic, each of
them with a distinct purpose. This document will focus on some of those packages and will leave out ggplot2
because it will be covered in the advanced graphics training course, without any pretension to cover them
thoroughly. The first two packages, namely tidyr and dplyr, are devoted to data wrangling. Indeed, we
will underline the need to produce tidy data from raw datasets before we make any graphics of before we
carry out any analysis. One thing you should consider is that Hadley Wickham, as well as every tidyverse
developer, are very active in the net. Hence, do not hesitate to google any doubt when using these packages.
In fact, you will be constantly using internet to look for ways of doing things or just to copy and paste things
that you have already done in the past but that you have again forgotten. And that is absolutely fine given
the huge number of possibilities tidyverse offers. Even Hadley Wickham himself confesses using internet like
that when he uses tidyverse packages!. Other that the net, help() and vignette() docs for these libraries
are generally quite explicit and meaningful.

When you are focused on data wrangling, Mr Wickham considers you should be using only data frames.
This implies that tidyverse is mainly devoted to rectangular datasets, that is, data that can be arranged in
rows and columns. There are some other packages in tidyverse that deal with other data structures, but still,
data frames are central to the tidyverse logic. There even exist specific functions in these packages to build
data frames in their own way, and even to create an improved data frame object that they have called tibble.
df1 <- data.frame(letters =letters,

position = 1:26)
df1
class(df1)
head(df1)

df2 <- tibble(letters = letters,
position = 1:26)

df2
class(df2)
head(df2)

rm(df1)
rm(df2)

Hadley Wickham is not only adamant about using data frames, but also about the fact that data frames
should not have row names. This might seem radical, but he is quite rigth about it. On the other hand,
tidyverse offers the possibility of converting the rownames of a data frame into a proper variable.
iris # iris is a dataset that is included in R by default
has_rownames(iris)
class(iris)

2

as_tibble(iris)

mtcars # mtcars is a dataset that is included in R by default
has_rownames(mtcars)
as_tibble(mtcars)
remove_rownames(mtcars)
rownames_to_column(mtcars)
rownames_to_column(mtcars, var = "car.model")
mtcars_tbl <- as_tibble(rownames_to_column(mtcars, var = "car.model"))
mtcars_tbl <- rownames_to_column(mtcars, var = "car.model") %>% as_tibble()
mtcars_tbl
head(mtcars)

glimpse() is a tidyverse function tat allows you to have a look, a glimpse, at your data.
glimpse(mtcars_tbl)
glimpse(mtcars)

tibbles are, in essence, data frames. However, they have distinctive features that make them agreeable
to use. First, they tell the nature of each variable, similar to what str() would do. Secondly, by default, it
prints ten rows and as many columns as they fit in your console. You may modify printing options and tell
how many rows you want to print and whether you want all columns printed instead of just those that fit in.
And you can tell so just for once or for as long as your current session lasts.
flights
class(flights)
flights %>% print(n = 100)
flights %>% print(n = 5)

No info about remaining variables outside the currently available space.
flights %>% print(n = 5, max_extra_cols = 0)

Info about remaining variables and name of the 1st variable outside the currently available space.
flights %>% print(n = 5, max_extra_cols = 1)
```.
All columns displayed.

flights %>% print(n = 5, width = Inf) # All columns displayed.

In some sense, tibbles are more strict than data frames. For instance, they do not accept partial matching
when subsetting with $. Also, when subsetting a single variable with [,], the tibble stays as such without
needing to specify drop = FALSE. Compare these two code chunks.
df <- data.frame(numbers = 1:2, letters = c("a","b"))
df
df$l
df[, "letters"] # The outcome is a vector
df[, "letters", drop = FALSE] # The outcome is a data frame

tb <- tibble(numbers = 1:2, letters = c("a","b"))
# or
tb <- as_tibble(df)
tb
tb$l
tb$letters

3



tb[, "letters"] # The outcome is a tibble, not a vector.
class(tb[, "letters"])

All packages in tidyverse, with the exception of ggplot2, use the %>% operator, called the pipe, specifically
designed by tidyverse developers to concatenate functions in an easy-to-follow and modulable manner.
Traditional R executes imbedded code from the inside outwards, making it difficult to read and to implement
in a progressive manner. The %>% operator allows deploying commands as you implement them, one after
the other. This improves not only legibility, but also the transmission between your brain and your code:
you implement your ideas as they come up. The following image, taken from a slide by Roman François,
compares a hypothetical code of a cake recipe written traditional R, and using tidyverse.

Under ggplot2, we use the + operator instead of %>% for historical reasons, and also because there is this
notion of layers when building graphics that will be added until you get the final figure.

Thus, you will see code lines in this document written in two ways:

1 - tidyverse_function (Mydataframe, function_arguments) or 2 - Mydataframe %>% tidy-
verse_function(arguments)

Both ways are equivalent. That said, you will be probably seeing the first when only one function is used.
The second way is particularly useful when several functions are concatenated. We will see all that in detail
in the following pages.

2. tidyr
Tolstoy’s Anna Karenina begins with the phrase “Happy families are all alike; every unhappy family is
unhappy in its own way”. Hadley Wickham starts his paper on tidy data paraphrasing Anna Karenina: “Like
families, tidy datasets are all alike but every messy dataset is messy in its own way” (https://www.jstatsoft.
org/article/view/v059i10).

tidyr package is devoted to rendering your dataset tidy. Indeed, according to Hadley Wickham, there are
many ways to produce untidy datasets, there is only one way of having a tidy one. This may seem exaggerated,

4

https://www.jstatsoft.org/article/view/v059i10
https://www.jstatsoft.org/article/view/v059i10


but it is not totally so.

For a start, data should always be stored in data frames, which allow having categorical and numerical data
on the same object. Besides, rownames are deprecated: they should be part of the data fame as a variable
itself (we will see that later on). In any case, and this is extremely important, each column must correspond
to a single variable and each row must correspond to a single observation. This may seem obvious but, in
real life, such ideal standard is far from granted. The whole idea behind tidyr is that, before you go any
further on your analysis, you need to have a tidy dataset. This package will not only help you do that, it will
also provide you with an easy-to-follow logic that will allow you efficiently go through your whole analysis.

In this document we will focus on four functions that perform two-by-two complementary functions, that
is pivot_longer() / pivot_wider() and unite() / separate() couples. We will also mention the fill()
function, which might be handy with really untidy datasets.

2.1. pivot_longer() / pivot_wider()
Pivoting will allow you solve the problem when every column is not a variable and/or when a single
observation is scattered across multiple rows.

Let us have a look at the religious income dataset.
relig_income
class(relig_income)

Is this dataset tidy? How many variables do you see? Does the number of columns correspond with the
number of variables? Does the number of rows correspond with the number of observations? If not, how
many columns and rows should this dataset have?

In order to convert this messy dataset into a tidy one, we will use the pivot notion as proposed in tidyr. You
may learn about that notion by typing the line here below. A vignette is a sort of thorough help regarding
a certain concept or notion. These are discretionary help pages that are proposed by developers at their will.
If you want to know about the vignettes proposed on different packages, you may type vignette().
vignette()
vignette("pivot")

relig_income_tidy <- relig_income %>%
pivot_longer(cols = -religion, names_to = "income", values_to = "counts")

relig_income_tidy %>% print (n = 12)

The arguments we have used: * cols: it chooses the variables of the data frame you want to pivot. This
selection might be negative. Indeed, in the line above, we are choosing all variable in the relig_income data
set, with the exception of religion variable. * names_to: Because we are making the data frame longer,
we are implying that we have too many columns that have to be summarized into a single variable. This
variable, which we are naming with this argument and does not exist on the original data set, will include the
names of all those columns that are being pivoted, that is the names of all those columns not included under
the cols argument. * values_to: Here we are giving a name to the final variable that we are creating when
pivoting. That variable will host the values of all columns summarized, that is, those not include under cols.

One issue that might be hard to deal with when you start using tidyverse is the fact that sometimes it
seems need to name the variables using quotes (""), and sometimes you don’t. One way to get round this is
to remember that you do not use quotes when you refer to variables that already exist in the data set, and
you use quotes when you refer to varaibles that you want to create.

Let us see another example with a different dataset, that we will use to see what we can do when there are
missing values in the data set.

5



billboard
summary(billboard)

billboard_tidy <- billboard %>%
pivot_longer(

cols = starts_with("wk"),
# Here we choose which columns will be gathered.
# In the previous example, we left "religion" out of the gathering
names_to = "week",
values_to = "rank",
values_drop_na = TRUE # Rows with NA observation are discarded

)

Let us see the on a more biomed-oriented data set
load("dpi.for.pivot_longer.RData")
dpi.for.pivot_longer <- days_untidy

dpi.for.pivot_longer %>%
pivot_longer(cols = starts_with("day"),

names_to = "test_day",
values_to = "my.score")

dpi_tidy <- dpi.for.pivot_longer %>%
pivot_longer(cols = starts_with("day"),

names_to = "test_day",
values_to = "my.score",
values_drop_na = TRUE)

We can do the opposite to what pivot_longer() does by using pivot_wider(). In this case we will be
creating new variables out of existing ones. To show how it works, we may just use the data sets we have
been using so far.
dpi_tidy %>%

pivot_wider(names_from = test_day, values_from = my.score)

mydata.back <- relig_income_tidy %>%
pivot_wider(names_from = income, values_from = counts)

relig_income_tidy %>%
pivot_wider(names_from = "income", values_from = "counts")

billboard_tidy %>% pivot_wider( names_from = "week", values_from = "rank")

We see that NAs are implemented where there is no value.

NOTE: Older versions of tidyverse do not use pivot_longer() and pivot_wider() functions. Instead you
will find their ancestors, namely gather() and spread(), which have been deprecated in newer versions. We
show here how they work:
relig_income_tidy <- relig_income %>%

gather (-religion, key = income, value = count)
# we can easily get the original dataset back using "spread()"
relig_income_tidy %>%

spread (-religion, key = income, value = count)

6



2.2. unite() / separate()
This couple of functions are used to horizontally paste (or split) the values of two or more variables.To see
how unite() and separate() work we will load the first tuberculosis dataset.
load ("TB1.RData")
TB1

That dataset contains TB cases by country between 1998 and 2001. We’d like to: 1-To separate female (f)
and male (m) cases and make those case numeric (the variable fm_cases is a character). 2-Separate the year
variable into century and year2, while keeping the original year variable. 3-Group the country and their
continent_code, separated by a “.”.
TB1 %>%

separate(col = fm.cases, into = c("female", "male"))

TB1 %>%
separate(col = fm.cases, into = c("female", "male"), convert = TRUE)

TB1 %>%
separate(col = fm.cases, into = c("female", "male"), convert = TRUE) %>%
separate(year, c("century", "year2"), sep = 2, remove = FALSE)

TB1 %>%
separate(col = fm.cases, into = c("female", "male"), convert = TRUE) %>%
separate(year, c("century", "year2"), sep = 2, remove = FALSE) %>%
unite(col = "country.code", country, continent_code, sep = ".", remove = FALSE)

Mind the use of the sep argument, whose use is slightly different in separate() and unite() functions.
Under separate(), sep will read by default any non-alphanumerical character. We may change this default
behaviour and specify any string character we wish. If the sep argument is numeric, separate() will split
values at the position determined by that numeric value. Under unite(), sep has a default input, i.e. "_",
which can be modified as wished, although it can never be numeric.
aux <- TB1
aux$whatever <- rep(c("eeee.ff-ggg"),nrow(aux))
aux

aux %>%
separate(col = whatever, into = c("e", "f", "g"))

aux %>%
separate(col = whatever, into = c("e", "f", "g", "h"))

aux %>%
separate(col = whatever, into = c("e", "f", "g")) %>%
unite(col = "new.whatever", e, f, g, remove = FALSE)

aux %>%
separate(col = whatever, into = c("e", "fg"), sep = "\\.", remove = FALSE)

aux %>%
separate(col = whatever, into = c("ef", "g"), sep = "-")

Why "\\."? Because otherwise “.” means “any character”. The \\ is used to explicitly ask for “.” as such.
sub(".","-",aux$whatever)
sub("\\.","-",aux$whatever)

7



Note: The sub() function will substitute just the first match. If there is more than one match on each
element of the target, then use gsub().

One last thing about the sep argument: You can specify anything to be the separator. This might be very
useful when you want to get rid of some text while uniting or separating some variables, for example.
aux <- TB1
aux$whatever <- rep(c("I.WANT.THISbutnotthisAND.THIS.TOO"),nrow(aux))
aux
aux %>% separate(whatever, c("This", "This too"), sep = "butnotthis")

Let us have a look now at the second tuberculosis dataset, which present tuberculosis cases in all counties,
per year, age and sex.
load("TB2.RData")
TB2

Is it tidy? Why? Any ideas to make it tidy?
TB2 <- tibble(TB2) # This is optional
TB2

TB2 %>%
pivot_longer (cols = c(starts_with("f"),

starts_with("m")),
names_to = "temp1", values_to = "Nb.cases")

TB2 %>%
pivot_longer (cols = c(starts_with("f"),

starts_with("m")),
names_to = "temp1", values_to = "Nb.cases") %>%

separate (temp1, c("sex", "temp_age"), sep = 1)

TB2 %>%
pivot_longer (cols = c(starts_with("f"),

starts_with("m")),
names_to = "temp1", values_to = "Nb.cases") %>%

separate (temp1, c("sex", "temp_age"), sep = 1) %>%
separate (temp_age, c("temp_min","temp_max"), sep = 2)

TB2 %>%
pivot_longer (cols = c(starts_with("f"),

starts_with("m")),
names_to = "temp1", values_to = "Nb.cases") %>%

separate (temp1, c("sex", "temp_age"), sep = 1) %>%
separate (temp_age, c("temp_min","temp_max"), sep = 2) %>%
mutate(temp_min = sub("01", "00", .$temp_min),

temp_max = sub("^4$", "14", .$temp_max))

TB2 %>%
pivot_longer (cols = c(starts_with("f"),

starts_with("m")),
names_to = "temp1", values_to = "Nb.cases") %>%

separate (temp1, c("sex", "temp_age"), sep = 1) %>%
separate (temp_age, c("temp_min","temp_max"), sep = 2) %>%
mutate(temp_min = sub("01", "00", .$temp_min),

temp_max = sub("^4$", "14", .$temp_max)) %>%

8



unite("age.range", temp_min, temp_max, sep = "-")

Question: Can you think of an alternative column pick on the pivot_longer() line above?
TB2 %>%

pivot_longer (cols = -c("country","iso2","year"),
names_to = "temp1", values_to = "Nb.cases")

TB2 %>%
pivot_longer (cols = !c("country","iso2","year"),

names_to = "temp1", values_to = "Nb.cases")
TB2 %>%

pivot_longer (cols = -c(1:3),
names_to = "temp1", values_to = "Nb.cases")

TB2 %>%
pivot_longer (cols = !c(1:3),

names_to = "temp1", values_to = "Nb.cases")

Exercise 1

We will play around now with a small gene expression dataset. Load the dataset executing the following line.
load ("geneset1.RData")

This dataset presents expression data for 12 genes. As for experimental design, two genotypes (WT and
mutant) have undergone two treatments (Tr and Ctrl). Three independent experiments were carried out
(Rep1 to Rep3).

• What class of object is geneset1?
class(geneset1)
summary(geneset1)

• What happens when you convert it into a tibble?
tibble(geneset1)

tidyverse developers do not accept rownames in datasets when you use their functions, and they have a
point in there. By definition, rownames must be unique. That is, you cannot have repeated rownames on
any dataset. However, if you need to tidy up your dataset using, for instance, the pivot_longer() function
in order to accommodate columns to unique variables, then rownames would be duplicated. tidyverse
developers have created the rownames_to_column() function, which allows converting rownames into a
distinct variable in the data frame.

• Use the rownames_to_column() function to modify geneset1 so that it presents a variable called
gene containing the genes. Do not hesitate to have a look at the arguments of the function to know
how it works.

geneset1
geneset1 <- rownames_to_column(geneset1, var = "gene")
# Or
geneset1 <- geneset1 %>% rownames_to_column(var = "gene")

• Is this dataset tidy? Why? How many columns are there, and how many variables? Make the dataset
tidyr using the tidyverse functions.

geneset1 %>%
pivot_longer(-gene, names_to = "aux", values_to = "counts")

geneset1 %>%

9



pivot_longer(-gene, names_to = "aux", values_to = "counts") %>%
separate(aux, c("Genotype", "Treatment", "Replicate"))

# Or:
tidy.genes <- geneset1 %>%

pivot_longer(-1, names_to = "aux", values_to = "counts") %>%
separate(aux, c("Genotype", "Treatment", "Replicate"))

# Or:
tidy.genes <- geneset1 %>%

pivot_longer(WT.TR.REP1:MUT.CTRL.REP3, names_to = "aux", values_to = "counts") %>%
separate(aux, c("Genotype", "Treatment", "Replicate"))

# Or:
tidy.genes <- geneset1 %>%

pivot_longer(2:ncol(.), names_to = "aux", values_to = "counts") %>%
separate(aux, c("Genotype", "Treatment", "Replicate"))

• Calculate the mean expression of every gene for every genotype and treatment, the same as aggregate()
would do under base R.

tidy.genes <- geneset1 %>%
pivot_longer(-gene, names_to = "aux", values_to = "counts") %>%
separate(aux, c("Genotype", "Treatment", "Replicate")) %>%
# group_by(gene, Treatment, Genotype) %>%
summarise(mean_counts = mean(counts))

2.3. fill()
We will finish the overview of tidyr with the fill() function. Let us imagine that somebody with a twisted
sense of tidiness has produced a dataset like the one in geneset2.xlsx file, and you have to analyse it. Please
have a look at the file under excel and then import the data as it is using the RStudio -> File -> Import
Data -> From Excel menu, or by executing the first line on the code chunk here below if you have installed
the readxl package.
geneset2 <- read_excel("geneset2.xlsx")
geneset2
class(geneset2)

The fill() function will magically fill in the running NAs with the last non-NA option
geneset2 %>%

fill(gene, Genotype, Treatment)

geneset2 %>%
fill(gene, Genotype)

3. dplyr
We will start now using dplyr, which will help you filtering, selecting and arranging the dataset. By doing
so, you will be able to just keep the data that are relevant to your current analysis. Before using dplyr,
some tidying is usually necessary. After that, both packages tidyr and dplyr, among others, might be easily
combined in your pipeline until you get the optimal dataset for your study.

dplyr provides a consistent set of verbs that help you solve the most common data manipulation challenges:
filter() picks cases based on their values.
select() picks and orders variables based on their names or indexes.
mutate() adds new variables to the data set. They might be functions of existing variables.

10



rename() renames variables to the data set.
arrange() changes the ordering of the observations
summarise() reduces multiple values down to a single summary.
Those all combine naturally with group_by() which allows you to perform any operation by groups of
observations in a very robust and mostly intuitive manner.

The nycflights13 library contains several datasets with information on flights within the USA. This package
and its datasets are widely used when teaching or explaining tidyverse features, including by Hadley Wickham
himself.
library(nycflights13)
flights
class(flights)
str(flights)
glimpse(flights)

3.1. filter()
filter picks cases based on their values. That is, filter picks rows (observations) according to boolean
questions on variable(s) and removes those observations not complying with those boolean questions, that is
those observations for which al questions asked are FALSE. Therefore, the outcome of filter() is meant to
have fewer rowsthat that is fewer observations, that the data frame had before using the function.
flights
filter(flights, month == 9) # FLights departing in September
flights %>% filter(month == 9)

# Flights departing on September 25th to Alburquerque.
filter(flights, month == 9, day == 25, dest == "ABQ")
flights %>% filter (month == 9, day == 25, dest == "ABQ")
flights %>% filter (dest == "ABQ", month == 9, day == 25)

Obviously, we may create new objects with the results.
jan1 <- filter(flights, month == 1, day == 1)
dec25 <- filter(flights, month == 12, day == 25)

Flights departing in November or December
flights %>% filter(month == 11 | month == 12)
filter(flights, month == 11 | month == 12)
filter(flights, month %in% c(11, 12))
filter(flights, month == 11 | 12) ## !!!
filter(flights, month == 11 , month == 12)
filter(flights, month == 11 & month == 12)
filter(flights, month == 11 , day == 12)
filter(flights, month == 11 & day == 12)

Flights with an arrival delay between one and two hours. The second line uses the function between(),
which is very useful. It can be used obviously outside on its own or in any other context. It renders a logical
vector.
flights %>% filter(arr_delay >= 60 & arr_delay <= 120)
flights %>% filter(between(arr_delay,60,120))
between(flights$arr_delay,60,120)

between(sample(1:10),5,8)

11



Flights with less than two-hour delay, both at departure and on arrival.
filter(flights, arr_delay <= 120, dep_delay <= 120)
filter(flights, !(arr_delay > 120 | dep_delay > 120))

• Can we pick United Airlines flights departing on March 13th from other NYC airport than JFK.
flights %>%

filter(carrier == "UA", month == 3, day == 13, origin != "JFK")

xor is a not-so-easy to grasp boolean parameter.
filter(flights, xor(day == 1 ,month == 1))

To see what xor does, run the line here below:
table(filter(flights, xor(day ==1,month == 1))[,c("day","month")])

Those would be flights on the first day of the month except for January or those flights any day in January,
expet on the first.

To have a better understanding on what the Boolean choices &,|,! and xor do, have a look at the image here
below. Remember: we are filtering rows in our data frame. Hence, x and y in the picture are the filtering
choices concerning two different columns. For instance, if we look at our last flights example, x would be
those rows for which day == 1, and y would correspond to those rows were the month == 1. By applying
the right Boolean parameter, you will get the final, filtered rows in your data frame.
img <- readPNG("boolean venns.png")
grid.raster(img)

Exercise 2

Take the flights dataset and use the filter function in order to find:

• United Airlines flights departing on March 13th from other NYC airport than JFK.
flights %>% filter(carrier == "UA", month == 3, day == 13, origin != "JFK")

• Fligths landing in Los Angeles (LAX) or San Francisco (SFO).
flights %>% filter(dest %in% c("LAX", "SFO"))
flights %>% filter(dest =="LAX" | dest == "SFO")

12



• Fligths not landing in LAX ou SFO.
flights %>% filter(!dest %in% c("LAX", "SFO"))
flights %>% filter(dest !="LAX" & dest != "SFO")
flights %>% filter(!dest =="LAX" & !dest == "SFO")

• Flights not departing in January.
flights %>% filter(month != 1 )
# Or
flights %>% filter(!month == 1 )
flights %>% filter(month > 1 )

• Flights departing between 5 A.M. and 8 A.M.
flights %>% filter(hour >= 5 & hour <= 8)
# Or
flights %>% filter(between(hour,5,8))
# Or
flights %>% filter(dep_time >= 500 & dep_time <= 800)
# Or
flights %>% filter(between(dep_time,500,800))

• Flights departing in advance in the morning (before midday).
flights %>% filter(hour < 12, dep_delay < 0 )
# Or
flights %>% filter(dep_time < 1200, dep_delay < 0 )
# Or
flights %>%

filter(dep_time < 1200) %>%
filter(dep_delay < 0 )

# Or
flights %>%

filter(dep_delay < 0 ) %>%
filter(dep_time < 1200)

• Flights with greater delay at arrival than at departure.
flights %>% filter(arr_delay > dep_delay)

• Flights taking off in advance OR landing in advance.
flights %>% filter(dep_delay < 0 | arr_delay < 0)

toto <- flights[1:10,]
tata <- data.frame(var=rnorm(10))
toto %>% filter(tata$var < 0)

3.2. arrange()
arrange() changes the order of the rows, but does not filter them. Its use is similar to functions such as
sort(), order() etc., but you might find it easier to use. The use of arrange() implies no reduction of the
number of rows in the data frame, as opossed to what happened with filter().
flights
arrange(flights, dep_delay)
flights %>% arrange(desc(month))

13



arrange(flights,desc(day), desc(month))
flights %>% arrange(desc(day), arr_time)

The variable according to which you are arranging does not necessarily need to be numeric.
flights %>%

arrange(carrier) %>%
dplyr::select(carrier, everything())

You can obviouly combine functions. Actually, that is the whole point.
flights %>%

filter(day == 31, month == 12, dep_time > 1900) %>%
arrange(dest) %>%
dplyr::select(dest, everything())

And you can arrange flights according to calculations you may perform on existing variables. In the example
here below, we arrange the flights according to how they reduced their delay during flight time.
flights %>% arrange (arr_delay - dep_delay) %>%

mutate(ratrappage = arr_delay - dep_delay) %>%
dplyr::select(dep_delay, arr_delay, ratrappage, everything())

Exercise 3

• Show first flights with the longest arrival delays
flights %>% arrange(desc(arr_delay))

• Show the slowest (in speed terms, not duration) flights first. Anything to say at least about the first
flight on the list?

flights %>%
arrange(distance / air_time)

flights %>%
mutate(speed = distance / air_time) %>%
arrange(speed) %>%
dplyr::select(speed, everything())

• Which flights have most successfully reduced their delay during the flight?
arrange(flights, desc(dep_delay-arr_delay))

3.3. select() and rename()
select() does with variables what filter() and arrange() do for observations. That is, it discriminates
and/orders columns while keeping the observations untouched. It is advised to use it running dplyr::select()
in order to specify you are using select() from the dplyr library cause, more often than not, there might be
a conflict between different functions called select() from different libraries.
# Select columns by name
flights %>% dplyr::select(origin, dest)
flights %>% dplyr::select(dest, year, month, day)
flights %>% dplyr::select(dest, year, month, day, everything())

flights %>% dplyr::select(year, day)
flights %>% dplyr::select(year:day)

14



flights %>% dplyr::select(-year,-day)
flights %>% dplyr::select(-(year:day))

dplyr::select(flights, ends_with("delay"))
dplyr::select(flights, starts_with("dep"))
dplyr::select(flights, contains("dep"))
dplyr::select(flights, contains("delay"),everything())
dplyr::select(flights, origin, dest, everything())

The lines below might seem tricky, but they underline the fact that variable selection is sequential but it
should also take into account the “environment” in which the selection is taking place.
select(flights,dep_delay:arr_delay)
select(flights,dep_delay:arr_delay,-arr_time)
select(flights,-arr_time, dep_delay:arr_delay) ## !!
flights %>%

dplyr::select(-arr_time) %>%
dplyr::select(dep_delay:arr_delay)

We would have expected the third line above to give the same result as the second one, but it does not. The
reason is that we are trying to do it within a single select() calling. Hence, the sequence works on the second
line, cause in that sequence we pick a range of columns and then, from that range, I remove arr_time. It is
sequential and not redundant. The third line sequence, however, it is redundant: we remove arr_time and,
then, within the same select calling, we go for the dep_delay:arr_delay, which should include arr_time
(and it does). The way to break up the redundancy is to call for a second select(), which takes in the output
of the first one on the same command. As follows:
flights %>%

dplyr::select(-arr_time) %>%
dplyr::select(dep_delay:arr_delay)

You can use select() to rename variable names as well, but be careful because it will only keep the selected
variables, with their new names, and will discard the rest.
flights %>% dplyr::select(month, day)
flights %>% dplyr::select(date = day, Month = month, everything())

If you want to change the names of spme variables without selecting them out, you may use rename()
instead. In this case all variables will be kept, and the one under the function will have the name changed.
flights %>% rename(date = day)
flights %>% rename(date = day, Month = month)
flights %>% dplyr::select(date = day, Month = month, everything())

3.4. mutate() / transmute()
mutate() adds new variables that are, usually by transforming the existing ones. mutate() can work
sequentially, creating new variables from the ones you have just created within the same command.
df <- data.frame(value = 1:5)
mutate (df, double = 2*value, quadruple = 4*value)
mutate (df, double = 2*value, quadruple = 2*double)
df %>% mutate (double = 2*value, quadruple = 2*double)

The keep argument under mutate() might be useful. Mind the use of a dot before the argument. This is
used so that the function understands oyu want to use that argument, and not create a variable with the
same name of that argument.

15



mutate(mtcars, mpg.per.cyl = mpg / cyl, mpg.per.hp = mpg / hp)
mutate(mtcars, mpg.per.cyl = mpg / cyl, mpg.per.hp = mpg / hp, .keep = "unused")
mutate(mtcars, mpg.per.cyl = mpg / cyl, mpg.per.hp = mpg / hp, .keep = "used")
mutate(mtcars, mpg.per.cyl = mpg / cyl, mpg.per.hp = mpg / hp, .keep = "none")
mutate(mtcars, mpg.per.cyl = mpg / cyl, mpg.per.hp = mpg / hp, keep = "none") # !!

If your dataset does not have row name and the information about your individual identities is stored in
non-mutated variables, that information would be lost if you decided to keep = "used" or keep = "none".
You may include the extra-variable(s) you want to keep, so you so not lose that information.
mutate(mtcars_tbl, mpg.per.cyl = mpg / cyl, mpg.per.hp = mpg / hp, .keep = "used")
mutate(mtcars_tbl, mpg.per.cyl = mpg / cyl, mpg.per.hp = mpg / hp, .keep = "none")

mutate(mtcars_tbl, car.model, mpg.per.cyl = mpg / cyl, mpg.per.hp = mpg / hp, .keep = "used")
mutate(mtcars_tbl, car.model, mpg.per.cyl = mpg / cyl, mpg.per.hp = mpg / hp, .keep = "none")

You can use transmute() to get the same result as mutate() when keep = "none", but with less coding
transmute(mtcars, mpg.per.cyl = mpg / cyl, mpg.per.hp = mpg / hp)
transmute(mtcars_tbl, mpg.per.cyl = mpg / cyl, mpg.per.hp = mpg / hp, car.model)
transmute(mtcars_tbl, car.model, mpg.per.cyl = mpg / cyl, mpg.per.hp = mpg / hp)

Exercise 4

• Create these three variables on the flights dataset with just one code line:

1. A variable dist_km,that is distance en km (1 mile= 1.60934 km)

2. A speed variable in km / h

3. A catch_up variable quantifying the winned (or lost) time during the flight
flights %>%

mutate(dist_km = distance*1.60934,
speed = dist_km/(air_time/60),
catch_up = dep_delay-arr_delay) %>%

dplyr::select (dist_km, speed, catch_up, everything()) %>%
arrange(dist_km)

3.5. summarise
summarise() reduces multiple values down to a single summary value.
flights %>% summarise(min(distance)) # Short indeed!
flights %>% filter(distance == 17) %>% dplyr::select (origin, dest)
summarise(flights,mean(dep_delay))
summarise(flights,mean(dep_delay, na.rm = TRUE))
summarise(flights,sum(dep_delay, na.rm = TRUE))

Those lines do not add anything to what we have aleady seen. But summarise() becomes very useful when
after the group_by() function.

3.6. group_by
The functions seen above combine naturally with group_by() which allows you to perform any operation
“by group” of observations. The group_by() function takes an existing data frame and converts it into a

16



groupwise-reduced data frame where operations are performs for each of those groups. This is similar to
what aggregate() does in base R, though in a much more pwoerful and flexible manner.
flights %>%

group_by(dest)

Nothing happens there, but everything becomes obvious when we summarise the information.
flights %>%

group_by(dest) %>%
summarize(num.of.flights = n())

flights %>%
group_by(dest) %>%
summarize(num.of.flights = length(dest))

I may calculate ne variables by destination then. Then arrange the data, filter it. . .
flights %>%

group_by(dest) %>%
summarize(num.of.flights = n(),

mean_speed = mean(distance / (air_time/60), na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE))

flights %>%
group_by(dest) %>%
summarize(num.of.flights = n(),

mean_speed = mean(distance / (air_time/60), na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE)) %>%

arrange(desc(delay))

flights %>%
group_by(dest) %>%
summarize(num.of.flights = n(),

mean_speed = mean(distance / (air_time/60), na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE)) %>%

arrange(desc(delay)) %>%
filter(num.of.flights > 300)

Compare the results we obtained above with the group_by() / summarise() couple, with the results we
obtain here below without using them.
summarize(flights,

count = n(), # the same as summarise(n=n())
mean_speed = mean(distance / (air_time/60), na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE))

All this leads us to come back to the use of %>%.

3.7. A final word on the pipe: %>%
Please have look at the comparison below to realize how useful the %>% operator is. First, we create an
object in one line using tidyverse functions but without using %>%.
filter(summarise(group_by(filter(flights, !is.na(dep_delay)), month, day, origin),

delay = mean(dep_delay), n = n()), n > 100)

It is not easy to know precisely what the whole line renders.

17



Here below you have the same thing using not only the tidyverse functions, as above, but also its %>%
operator.
flights %>%

filter( !is.na(dep_delay) ) %>%
group_by( month, day, origin ) %>%
summarise(delay = mean(dep_delay), n = n()) %>%
filter( n < 100 )

That makes easier reading nested code lines by displaying the functions in the order they’ll be executed. It
also helps reasoning, data mining, finding the right question. For instance:

Excercise 5

Which are the three destinations in nycflights13 dataset with the highest average departure delay?
flights %>%

group_by(dest) %>%
summarise(delay = mean(dep_delay,na.rm = TRUE)) %>%
arrange (desc(delay)) %>%
head (3)

Which flights take place on a daily basis (carrier + flight)?
flights %>%

group_by(carrier,flight) %>%
count() %>%
filter(n==365)

We will play around now with a small gene expression dataset.
load("geneset3.RData")
head(geneset3)
geneset3$GO_BP = sub("^ ", "", geneset3$GO_BP)

This dataset presents expression data for 12 genes as well as their annotations. As for the expression
experimental design, two genotypes (WT and mutant) have undergone two treatments (Tr and Ctrl). Finally,
the experiment has been repeated three times (Rep1 to Rep3).

• Could you please make this dataset tidy?

Answer: Rownames should be converted in a new variable. Other than that, there are nine annotation
variables, each one of them in a single column, which is fine, tidy. However, the variables of the experimental
design (i.e. Genotype, Treatment and Replicate), are not displayed in a tidy manner and, subsequently, nor
are the Expression values themselves. Here is the code that sorts all that up.
rownames(geneset3)

geneset3.tidy <- rownames_to_column (geneset3, var = "gene") %>%
pivot_longer(cols = -c(gene:GO_BP), names_to = "sample", values_to = "Expression")

geneset3.tidy <- rownames_to_column (geneset3, var = "gene") %>%
pivot_longer(cols = -c(gene:GO_BP), names_to = "sample", values_to = "Expression") %>%
separate (sample, c("Genotype", "Treatment", "Rep"))

• Now that the dataset is somehow tidy, we can play with it. We will arrange the genes according to their
decreasing mean difference expression between treated and control samples. But we are only interested
on the WT samples.

18



geneset3.tidy %>%
group_by (ID, Treatment, Genotype) %>%
summarise (mean_exprs = mean(Expression))

geneset3.tidy %>%
group_by (ID, Treatment, Genotype) %>%
summarise (mean_exprs = mean(Expression)) %>%
pivot_wider (names_from = Treatment, values_from = mean_exprs)

geneset3.tidy %>%
group_by (ID, Treatment, Genotype) %>%
summarise (mean_exprs = mean(Expression)) %>%
pivot_wider (names_from = Treatment, values_from = mean_exprs) %>%
mutate (diff.tr = TR - CTRL)

geneset3.tidy %>%
group_by (ID, Treatment, Genotype) %>%
summarise (mean_exprs = mean(Expression)) %>%
pivot_wider (names_from = Treatment, values_from = mean_exprs) %>%
mutate (diff.tr = TR - CTRL) %>%
arrange (desc(diff.tr)) %>%
filter(Genotype == "WT")

I would like to highlight the fact that the code allows reading what we have done, step by step. This is the
beauty of tidyverse: coding follows thought.

We will now show those genes involved in the response to Pascal Obispo, increasingly arranged by their length.
In order to do so, we will:

1-Remove all Expression-related data so that we focus on gene annotation.

2-Pick genes related to Pascal Obispo response.

3-Calculate the length of the gene and arrange the genes according to that.

The code here below looks a little bit more complicated cause it includes two functions, i.e. distinct() from
tidyverse’s dplyr and grepl() from base R, that appear here for the first time. It is made on purpose so
that you realize the power and flexibility of R in general and of tidyverse in particular.
geneset3.tidy %>%

select (-Genotype, -Treatment, -Rep, -Expression) %>%
distinct() %>% #!!!
filter (grepl("PASCAL OBISPO",GO_BP)) %>% #!!!
arrange (abs(START - END))

3.8. join
We will have a quick look at the join group of functions proposed by dplyr, which are very useful when dealing
with several data frames that you want to merge. You may use them instead of the recherchev-like functions
in excel. They represent an enlarged and more powerful toolset than the base R merge() function. For each
joining option will be proposing two different syntaxes, with or without the %>% rendering identical results.
We will also play with the order in which we place the data frames when joining them.

There are two types of joins: mutating joins and filtering joins, which evoke the terms mutate and
filter that we have already explored. A mutating join allows you combining variables from two datasets.
Filtering joins, on the other hand, will affect observations, but not variables.

These are the functions belonging to the join family:

19



Mutating joins: inner_join() left_join() right_join() full_join()

Filtering joins: semi_join() anti_join()

We will use two small data frames to have a look at those functions. One of them contains information on a
few genes and the other one contains p-values for certain in a transcriptomics study.
load("gene_info.RData")
load("gene_pv.RData")
gene_info
gene_pv
gene_info %>% inner_join (gene_pv) # inner_join(gene_info,gene_pv)

How does inner_join() work? It takes the x data frame and it matches it with the y data frame. Then it
looks at the common, key variables (in this case just the gene column), and it keeps only those observations
that are identical on both data frames. Finally, it takes those shared observations and it displays, in this
order, their data from x variables and y variables.

Let us have a look at how the other mutating joins work.
gene_info %>% left_join (gene_pv) # left_join(gene_info,gene_pv)
gene_pv %>% left_join(gene_info)

left_join() takes all the observations in x data frame and then it looks which ones of those are also present
in the y data frame. The output will include the whole x data frame. Then it matches the informatipon from
the y-only columns about the shared observations. The NAs on those columns tell us about those observations
on x that are not present on y.

Last, but not least, those y observations that do not appear on x are excluded from the left_join() outcome.
gene_info %>% right_join (gene_pv) # right_join(gene_info,gene_pv)

right_join() seems less intuitive than left_join(), but it works in a very similar way. It displays the
common, key variables, as they appear on y (gene_pvin the example above). Then it sticks the information
from x regarding those observations (hence the NAs concerning the missing observations in x) and finally, it
displays the information from y, which is obviously complete. Information about x-only observations is not
displayed.
gene_info %>% full_join (gene_pv) # full_join(gene_info,gene_pv)
gene_pv %>% full_join (gene_info)

full_join() is easier to grasp, and might be very useful. It displays all observations present in x and/or
y. Then it sticks the exclusive information from x and y, where NAs duly appear where the information is
missing on the corresponding data frame.

You may already be familiar with the merge() function. The dplyr x_join() functions are more explicit in
their arguments. That said, all mutating joins above have their equivalent merge() command.
gene_info %>% inner_join (gene_pv)
inner_join(gene_info,gene_pv)
merge(gene_info,gene_pv)

gene_info %>% left_join (gene_pv)
left_join(gene_info,gene_pv)
merge(gene_info,gene_pv, all.x = TRUE)

gene_info %>% right_join (gene_pv)
right_join(gene_info,gene_pv)
merge(gene_info,gene_pv, all.y = TRUE)

20



gene_info %>% full_join (gene_pv)
full_join(gene_info,gene_pv)
merge(gene_info,gene_pv, all = TRUE)

Filtering joins do not play on the variables. In other word, the outcome will display the same variables
as on the x data frame.
gene_info %>% semi_join (gene_pv) # semi_join(gene_info,gene_pv)
gene_pv %>% semi_join (gene_info) # semi_join(gene_pv,gene_info)

gene_info %>% anti_join (gene_pv) # anti_join(gene_info,gene_pv)
gene_pv %>% anti_join (gene_info)

Indeed, semi_join() and anti_join() will somehow filter the observations.

semi_join() will display the information in x about the observations that are present both in xand y.
semi_join() works in a similar way as inner_join() in the sense that it will display only common
observations between x and y but, in the case of semi_join(), no information for y is display.

On the other hand, anti_join() will display the information in x about the observations that are present
in x, but not in and y.In other words, it filters the x data frame down to the observations that are not
shared with y, that is, those that are x-exclusive.

What if variable names with the same name present different infos in x and y?
aux <- gene_pv
aux$gene_func <- c(letters[1:5]) # This is just to create a gene_func variable in gene_pv
aux %>%

left_join(gene_info)

Not good. The gene_func variable coming from the y data frame, i.e. gene_info is gone. Joining is
performed by default using all key variables, that is all varaibles with the same name on x and on y. You
may change this by specifying your practical key variables using the by argument.
aux <- gene_pv
aux$gene_func <- c(letters[1:5]) # This is just to create a gene_func variable in gene_pv
aux %>%

left_join(gene_info, by = "gene")
gene_info %>%

inner_join(aux, by = "gene")

Let us combine now joining with other dplyr functions.

For instance, how can I get the information on the genes whose pvs are < 0.05 in at least one experimental
comparison?
gene_pv %>%

filter (comp.treat < 0.05 | comp.gtype < 0.05) %>%
left_join(gene_info)

gene_pv %>%
filter (comp.treat < 0.05 | comp.gtype < 0.05) %>%
inner_join(gene_info)

In the example above, left_join() allows us to see that there are two genes with at least one pv < 0.05 for
whom there is no info available, thus the NAs. On the other hand, inner_join()* removes observations
(i.e. genes) which comply with the pv contraint but for whom there is not information available.

Which genes with pvs <0.05 in at least one of the comparisons do not appear in the infos df?

21



gene_pv %>%
filter (comp.treat < 0.05 | comp.gtype < 0.05) %>%
anti_join(gene_info)

I can use the next code chunk to get the infos of those genes with pvs < 0.05 in both conditions.
gene_pv %>%

filter (comp.treat < 0.05 & comp.gtype < 0.05) %>%
inner_join(gene_info)

3.9. Set operations
After the x_join() family, we will have a look at another group of two-table functions. The so called
set operations are useful when you are looking for repeated observations or redundant data between
two datasets. These operators work with complete rows, comparing data on every variable in both data
frames. Thus, x and y data frames are expected to share exactly the same variables when you perform set
operations. Each observation will then be compared on both datasets over all variables.

Set operationswill be executed with functions such as intersect(), union() setdiff().
x <- tibble(name = letters[1:6],

value = sample(1:6))
y <- rbind (x[1:2,], tibble(name = letters[7:10],

value = sample(1:4)))
x
y
intersect(x, y) # It returns observations present both in x AND y
dplyr::union(x,y) # It returns observations present in x and/or y, avoiding duplications.
setdiff(x,y) # Returns observations present in x, but not in y.
setdiff(y,x) # Returns observations present in y, but not in x.

3.10. count
Before we finish with this brief introduction to the dplyr package, we will come back to the count() function
we just saw a few lines back. This is a very powerful and elegant feature. Look a this example:
flights %>%

count (month, day)

which is the same as:
flights %>%

group_by(month, day) %>%
summarise(count = n())

The following examples will help us understand the usefulness of count
flights %>%

count (month, day) %>%
filter(n > 850)

flights %>%
group_by(dest) %>%
count(month)

We have seen there how to produce counting for cases regarding more than one variable. It is possible to
produce a boolean vaariable upon which we will do the counting. As follows:

22



flights %>%
count (dest, arr_delay > 20)

What are those destinations with the highest number of flights with more than 60-minute delay on arrival?
flights %>%

count (dest, arr_delay > 60) %>%
filter(`arr_delay > 60` == TRUE) %>%
dplyr::select( - `arr_delay > 60`) %>%
arrange(desc(n))
# Beautiful!

The following chunk is just meant to illustrate some of the power of tidyverse. Let us found destinations with
a rate higher that 25% of flights delayed on arrival for more than half an hour.
x <- flights %>%

count (dest, arr_delay > 30) %>%
rename(delayed_30 = n)

x

y <- flights %>%
count (dest)

y

left_join(x,y) %>%
mutate(percent_delayed = delayed_30 / n *100) %>%
filter(`arr_delay > 30` == TRUE) %>%
filter(percent_delayed > 25) %>%
arrange(desc(percent_delayed))

4. forcats
We this package we exit the data frame-only world to deal with factors. It is a particualrly useful package
when used in combination with ggplot2 to make graphics etc.

We will look at that in detail further below but, for the time being, have a look at the following exemple.
iris %>%

ggplot(aes(x = Species, y = Sepal.Width)) +
geom_boxplot()

It would be nice if we could re-order the species according to their median, or any other function i f we
change the default argument.
?fct_reorder
fct_reorder(iris$Species, iris$Sepal.Width)
fct_reorder(iris$Species, iris$Sepal.Width, .fun = mean)
# The order is the same according to the median and to the mean

fct_reorder(iris$Species, iris$Sepal.Width, .desc = TRUE)
fct_reorder(iris$Species, iris$Sepal.Width, .fun = sd)

Do a boxplot of the species in the iris data set according to their sepal width
iris %>%

mutate(Species = fct_reorder(Species, Sepal.Width)) %>%

23



ggplot(aes(x = Species, y = Sepal.Width)) +
geom_boxplot()

You may reorginize factors and making them ordered acording to different parameters like frequency, order of
appereance or value.
f <- factor(c("Low-Necr", "Low-Necr", "Low-Necr", "No-Necr", "High-Necr", "High-Necr"))
f
fct_count(f)
fct_infreq(f) # Arranges levels according to their frequency.
fct_infreq(f, ordered = TRUE) # Arranges and set hierarchy of levels according to their frequency
fct_inorder(f) # # Arranges levels acording to the order in whihc they appear in the factor.
fct_inorder(f, ordered = TRUE)

fct_relevel(f,"No-Necr","Low-Necr")

f <- factor(c(rep("weak",3), rep("absolute",15), rep("strong",5)))
fct_infreq(f)
fct_infreq(f, ordered = TRUE)
fct_inorder(f)
fct_inorder(f, ordered = TRUE)
fct_relevel(f,"weak")
fct_relevel(f, "weak", "strong")

f <- factor(c(7,4,1,8,10,10,3,7,8,4,3,4))
fct_inseq(f) # ?
fct_inseq(f, ordered = TRUE)
fct_inorder(f, ordered = TRUE)
fct_infreq(f, ordered = TRUE)

It is quite insane to try and memorize everything forcats can do to treat facotrs, reorder them etc. However,
it is worthile just having another glimpse at what ggplot2 and forcats are able to do when used together. We
will have a look at that at the en of this document.

5. purrr
purrr package provides functional programming tools, in analog terms to what the apply family offers in
base R. This package si quite powerful and yet, at the same time, is still developing and undergoing fine
tuning from its developers. Here we will just provide a hint of what purr is able to do.

5.1. detect() and detect_index()
These functions find the value (detect()) or position (detect_index()) of the first element complying with
a condition.

Before we say anything about those two function, can you please telle me wht the binary operator %%does?
6 %% 2
25 %% 5
333333 %% 3
25 %% 2

Indeed, %%calculates the remainder of a division. We will use that operator to understand what detect()

24



and detect_index() do.
is_even <- function(x) x %% 2 == 0
vect <- 5:12
vect
detect(vect, is_even)
detect_index(vect, is_even)
# Or:
vect %>% detect(is_even)
vect %>% detect_index(is_even)

In the vector 5:12, the first even number is 6 and it is in position 2 in the vector.

5.2. keep() and discard()
Using the same example as above, you may want to keep keep(), or discard(), all elements that comply a
condition.
keep(vect, is_even)
vect %>% keep(is_even)

discard(vect, is_even)
vect %>% discard(is_even)

Those functions do not do anything that is completely new, but it is true that they make it in a more elegent,
legible way than base R.
vect[is_even(vect)]
setdiff(vect, vect[is_even(vect)])

5.3. flatten() and flatten_X() functions
From ?flatten These functions remove a level hierarchy from a list. They are similar to unlist(), but they
only ever remove a single layer of hierarchy and they are type-stable, so you always know what the type
of the output is. flatten() returns a list, flatten_lgl() a logical vector, flatten_int() an integer vector,
flatten_dbl() a double vector, and flatten_chr() a character vector.
(x_list <- list(list(1:4, letters[1:6]))
flatten(x_list)
flatten(x_list[1])
flatten(x_list[[1]]) ## !!
flatten_dbl(x_list[1])
flatten_dbl(x_list[2])
flatten_chr(x_list[2])

5.4 map()
One of the nice feature of the purrr package is the map() and map_x() functions. These are intended to
make code that requires repeating the same action on a set of things clearer and more readable.

Consider the example from r4ds.had.co.nz (Iteration section).
(MyData <- tibble(

a = rnorm(10),
b = rnorm(10),
c = rnorm(10),
d = rnorm(10)

25

https://r4ds.had.co.nz


))

MyData %>% map(mean)

The outcome of map() is a list. YOu may for another class with map_x()-type functions.
MyData %>% map_dbl(mean)
MyData %>% map_dbl(sd)
# And their equivalents in base R:
apply(MyData, 2, mean)
# Or:
colMeans(MyData)
apply(MyData, 2, sd)

You may map the outcome of your favourite function
MyData %>% map(is_even) # !!
MyData %>%

map(function(x) round(x,0)) %>%
map(is_even)

MyData_bis <- MyData
MyData_bis$e <- letters[1:10]
MyData_bis %>% map(mean)
MyData_bis %>% map_dbl(mean)
# To be compared to:
apply(MyData_bis, 2, mean)

Using map_if() and map_at() we can mapconditionally.
map_if(vect, is_even, log2)
map_if(vect, is_even, log2) %>% flatten_dbl()
map_at(vect, c(2,5), log2) %>% flatten_dbl()

6. ggplot2
ggplot2 is the tidyverse package devoted to creating graphs and it was the first to be developed under
the tidy logic. Hadley Wickham was largely inspired by two major data visualization books, i.e Edward R.
Tufte’s “The Visual Display of Quantitative Information” from the 80s and, especially Leland Wilkinson’s
“The Grammar of Graphics” from the late 90s. Wilkinson’s book did not aim at necessarily producing stunning
figures, but mainly to producing them with a certain logic. Wilkinson understood that by decomposing figures
in its different elements he could then advocate a graphic grammar that would render rules and, subsequently,
power and expressiveness. Considering a dataset as an object, Wilkinson saw all different representations of a
dataset (pie charts, bar charts, scatterplots. . . ) not as separate entities but as representations of a common
entity, i.e. graphics. That meant that instead of having a separate function for every representation, as it is
the case in classic R, we should have a common grammar when building graphics, in which the geometry of
the final outcome would just represent one of the layers or constituents of the graphic.

Wickham implemented this graphics’ decomposition into R in order to provide a layered pipeline to build
figures, even though the grammar under ggplot2 does not match exactly Wilkinson’s grammar. As it happens
with other tidyverse packages, one might get at first the impression that the imposed logic is rigid and
limited. On the contrary, the obligatory tidiness and decomposition might seem restrictive but, in fact, it
offers endless possibilities precisely due to the fact that a well-defined grammar has been imposed.

With time and hard work by Wickham’s team, ggplot2 has become sort of the standard when preparing
R graphics for publication, presentation etc. Also, it is worth saying that it is easier to learn ggplot2 from

26



scratch than forgetting all you know about “traditional” graphics in R and then start over with ggplot2.
Hadley Wickham summarizes all that in the introduction of his “ggplot2” book:

ggplot2 is an R package for producing statistical, or data, graphics, but it is unlike most other graphics
packages because it has a deep underlying grammar. This grammar, based on the Grammar of Graphics
(Wilkinson, 2005), is composed of a set of independent components that can be composed in many different
ways. This makes ggplot2 very powerful, because you are not limited to a set of pre-specified graphics, but
you can create new graphics that are precisely tailored for your problem. This may sound overwhelming,
but because there is a simple set of core principles and very few special cases, ggplot2 is also easy to learn
(although it may take a little time to forget your preconceptions from other graphics tools).

He also emphasizes in that introduction the fact that structured and layered graphics reduces the distance
between a plot in the head and a plot on the page:

ggplot2 is designed to work in a layered fashion, starting with a layer showing the raw data then adding
layers of annotations and statistical summaries. It allows you to produce graphics using the same structured
thinking that you use to design analysis, reducing the distance between a plot in your head and one on the
page. It is especially helpful for students who have not yet developed the structured approach to analysis
used by experts.

A final warning before we start this chapter: what follows here is just a ridiculously tiny display of the
possibilities of ggplot2, but we hope it will provide you with key notions so that you will get a good grip on
its logic and hence be able to make progress at your own pace.

6.1. Layers
The following image summarises the different layers we may find in a graphic.

27



The foundation of any graphic is the bottom layer, i.e. the data. Even though it is probably the most
important layer, we won’t be talking much about it from here on because, actually, that is what we have
been doing up to this point. Now it is time to focus on those other layers:

• mapping regards the dimensions and variables according to which the data are represented. It maps
variables into xy coordinates.

• Scales is used to transform properties of the data into visual display, let that be shape, colour, size etc.
For instance, let all values in the x variable that are bigger than a certain threshold be red coloured
and blue if they are smaller, etc.

• Geometries states the type of geometry we will use to represent the data, let it be a scatterplot, a
bar chart, a pie chart, a radar plot etc.

• Statistics is about any putative statistical transformation of the data. This is very useful when the
dataset itself, despite being tidy, does not include the values we would like to display (mean, logs,
normalized values, standard deviations, fits. . . ).

• Facets refers to the number of subplots, disposed in row and columns on a unique plotting area, we
will use to represent our data. Data on different facet subplots will not be duplicated.

• Coordinates translates the axes into physical, actual projection on a 2d plot. This is quite obvious
and almost automatic when you are doing standard 2d plots on xy axis, but is less obvious when you
are running, for instance, spatial data that are not so easily projected on 2d plots.

28



• Themes describes the background and provides graphic details like legends, grids etc.

We will be covering different aspects related directly or indirectly to those layers. We won’t say much about
coordinates or themes for several reasons. One of them is the lack of time during in the course. Then again,
most of the time you will be using xy axis when plotting, hence coordinates will be a lesser issue. As for
themes, it is the only layer not intrinsically related to the data but to the aesthetic criteria you will impose
onto your plot. Those aesthetic criteria are sometimes crucial to make the plot attractive are easy to read,
but I’d rather focus on those functions regarding the datasets as such. In any case, those two layers will
inevitably come up when we will play with some datasets further down in the document, so you will get an
idea of what they are about.

You will only need a single function to compile all those layers into a single graphic, namely ggplot(). As for
the layers, you will be need to make explicit the data, the mapping aesthetics and the geometries. The
other layers present default outputs on ggplot2, but you will obviously compelled to tweak them to get the
graphic that you have in mind.

Hence, the basic template for any ggplot2 graphic can be summarized as follows, where features within < >
will correspond to your own specifications:
ggplot(data = <DATA>, mapping = aes(<MAPPINGS>)) +

<GEOM_FUNCTION>()

ggplot(data = <DATA>) +
<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

All we will see from here down will consist on how we complete and extend that basic template.

6.2. Mapping aesthetics
We will start exploring the mpg dataset, which compiles information collected by the US Environment
Protection Agency on 30 car models
mpg

If you execute ?mpg, you’ll get information on what those variables represent. Among those variables, displ
measures the engine size (in liters), and hwy measures highway fuel efficiency in miles per gallon. We will
make our first ggplot with the mpg data and we will map displ to the x axis and hwy to the y axis.
ggplot(data = mpg, mapping = aes(x = displ, y = hwy))

Nothing happens, and for a good reason: we did not tell the geometry
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point()

The “+” operator is equivalent to the %>% that we use with dplyr and tidyr. ggplot2 was developed first
and the “+” was maintained for historical reasons. Another reason why they kept it seems to be the fact
that it involves the notion of adding layers, and that is in fact what we have just done: add the geometry
layer. Please bear in mind that, as it happens with %>%, the “+” operator must be at the end of the code
line to which the new layer will be added, and not at the beginning of the added line.

Another thing that should be made clear from the beginning is the fact that ggplot2 -produced graphics are,
per se, R objects and, therefore, they can be stored under any name you may affect to them. Then again, you
are free to use the “+” operator on them.
p <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy))
p
p <- p + geom_point()
p

29



On the right hand side of the plot there seems to be a group of cars that fall somehow outside the linear
trend existing between displ and hwy variables. We will highlight them.
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +

geom_point(aes(colour = displ > 5 & hwy > 20))

We may add a second geometry just for those six cars, and then play with colour, size. . .
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +

geom_point() +
geom_point(data = mpg %>% filter(displ > 5, hwy > 20), colour = "red", size = 3)

It is important the order in which you decide to map the data. layers will be created accordingly.
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +

geom_point(data = mpg %>% filter(displ > 5, hwy > 20),
colour = "red", size = 3 ) +

geom_point()

We may choose to plot just those data points.
ggplot(data = mpg %>% filter(displ > 5, hwy > 20),

mapping = aes(x = displ, y = hwy)) +
geom_point()

ggplot(data = mpg %>% filter(displ > 5, hwy > 20),
mapping = aes(x = displ, y = hwy)) +

geom_point() +
xlim(0,max(mpg$displ)) +
ylim(0,max(mpg$hwy))

One last variation, with a twist:
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, colour = manufacturer)) +

geom_point(aes(size = displ > 5 & hwy > 20))

At this point we may speculate with the idea that those cars are of a different class from the rest, the class
being the type of cars we are dealing with on the mpg dataset. We can map then an aesthetic on the data
representation. Let us say we map colour.
ggplot(data = mpg) +

geom_point(mapping = aes(x = displ,
y = hwy,
color = class))

# or:
ggplot(data = mpg, mapping = aes(x = displ,

y = hwy,
color = class)) +

geom_point()

It looks like five out of those six cars are 2seaters, and that they are the only 2seaters. We may choose to
verify and emphasize that information. To emphasize, we may choose, for instance, size or alpha mappings,
the latter allowing transparence degrees on the data points.
ggplot(data = mpg) +

geom_point(mapping = aes(x = displ,
y = hwy,
color = class,
size = class == "2seater"))

30



ggplot(data = mpg) +
geom_point(mapping = aes(x = displ,

y = hwy,
color = class,
alpha = class == "2seater"))

ggplot2 maps a single level of the chosen aesthetic, in the example above colour, to each and every unique
value of the targeted variable, i.e. class. That process is called scaling. By the same process, a legend or
guide is produced explaining which aesthetic levels correspond to which variable values.

It is time to clarify a couple of things now: * Both British and American English are allowed in ggplot2, as
they are in the rest of packages in tidyverse. * The words data and mapping are not mandatory, as long as
you enter those arguments in the right order, as you already know. * The shape mapping will only map up
to six values of the targeted variable. Additional levels will be left out of the plot but will be listed on the
legend. * The aes() function gathers the mapped aesthetics. You will have realized that those aesthetics
include the x and y coordinates, which are aesthetics themselves, that is visual properties that you can map
to variables to display information about the data.

The code chunk below highlights some of the “subtilities” of ggplot2. For instance, mapping a single colour
under aes() does not make sense. However, you can set a single colour under a given geometry so that
everything concerning that geometry will be plotted in that colour. On the other hand, trying to map a
variable outside aes() will go unnoticed. In other words, you may use individual colours outside aes() when
you want to set the colour of the mapped information for whatever reasons you may have, but if you want to
actually map information from a variable into colours, you need to be inside aes().
ggplot(mpg, aes(x = displ, y = hwy, color = "green")) +

geom_point()
ggplot(mpg, aes(x = displ, y = hwy), colour = "green") +

geom_point()
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(colour = "green")

A couple of final introductory examples.
ggplot(mpg, aes(x = displ, y = hwy, colour = class, shape = drv)) +

geom_point()
ggplot(mpg, aes(x = displ, y = hwy, colour = class, size = cty)) +

geom_point()

6.3. Facets
As we have already said, you may map different aesthetics to variables. In some cases, though, mapping too
much into a single plot renders it difficult to be read. You may then split the plot into subplots using facets.
In this case we are using already an optional layer, that is one you do not need to make the plot, but one
that will allow you to improve and extend it.

If we add the facets layer to our plot structure, it will read like this:
ggplot(data = <DATA>) +

<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>)) +
facet_<TYPE>(<FORMULA>)

The facet layer is asking for two mandatory arguments: “type” and “formula”. There are two functions two
facet a plot, each of them defining the faceting you will get, facet_wrap() and facet_grid(). In both
cases, faceting requires a formula containing the name of the variables you want o use, preceded by the “~”
symbol, which might be read as “according to” or “myvariablewise”. In any case, the faceting variable(s)
must be discrete, not continuous.

31



In you are faceting on one variable of your dataset, you will be using facet_wrap().
ggplot(data = mpg) +

geom_point(mapping = aes(x = displ, y = hwy)) +
facet_wrap(~ class, nrow = 2)

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_wrap(~ class)

Obviously, you are free to add other mappings, let that be according to the variable you are faceting or to
any other variable in the dataset.
ggplot(data = mpg) +

geom_point(mapping = aes(x = displ, y = hwy, color = class)) +
facet_wrap(~ class)

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = class)) +
facet_wrap(~ class, ncol = 2)

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = as.factor(cyl)), alpha = 0.2) +
facet_wrap(~ class)

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ,

y = hwy, color = class,
alpha = manufacturer == "jeep")) +

facet_wrap(~ class)

You may fix axis scales as they are by default according to the limits of the overall chosen hwy and displ
variables, as we have done on the plots. Or you can set x and/or y boundaries according to the values on
each facet, as it is shown here below.
ggplot(data = mpg) +

geom_point(mapping = aes(x = displ, y = hwy, color = class)) +
facet_wrap(~ class, scales = "free_x")

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = class)) +
facet_wrap(~ class, scales = "free_y")

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = class)) +
facet_wrap(~ class, scales = "free")

If you are faceting on two variables you will use facet_grid(). In this case you will produce a grid of subplots
arranged in rows and columns according to, respectively, the variable1 and variable2 you specify in the
formula variable1 ~ variable2.
ggplot(data = mpg) +

geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(drv ~ cyl)

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +

32



facet_grid(cyl ~ drv)

Facets do not allow legends. That said, with label_both you may label facets so that the name of the grouping
variable appears with the value corresponding to the subplot.
ggplot(data = mpg) +

geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(cyl ~ drv, labeller=label_both)

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(cyl ~ drv, scales = "free_x")

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(cyl ~ drv, scales = "free_y")

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(cyl ~ drv, scales = "free")

Bear in mind that both cyl is a numeric variable. That is not a problem for faceting, as long as it is discrete,
not continuous.

6.4 Geometries
Now we have covered the layered structure of ggplot objects and have given examples of faceting, an optional
layer itself, we will come back to a crucial mandatory layer: geometry. Geom objects are the geometrical
object we use in the plot to represent the data. Geometries might be lines, bars, dots, smooth fits. . . ggplot2
proposes loads of geom_ objects, that you may find listed with the following line.
help.search("geom_", package = "ggplot2")

We will draw a set of plots here. The key point is not only to show a bunch of geometries so you may get
an idea of what they do, but also to get the notion that we will be plotting the same data over and over,
with the same mappings layer and that we will be just changing the geometries layer.
df <- data.frame(

var1 = c(3, 1, 5),
var2 = c(2, 4, 6),
info = c("a","b","c")

)

p <- ggplot(data = df, mapping = aes(var1, var2, label = info))
p <- ggplot(df, aes(var1, var2, label = info))

p + geom_point() + ggtitle("point")
p + geom_text() + ggtitle("this is my title")
p + geom_bar(stat = "identity") + ggtitle("bar")
p + geom_tile() + ggtitle("tile")
p + geom_line() + ggtitle("line")
p + geom_area() + ggtitle("area")
p + geom_path() + ggtitle("path")
p + geom_path() + geom_text() + geom_tile()
p + geom_polygon() + ggtitle("polygon")

33



Here below, we are looking at several ways to deal, for instance, with standard errors.
df <- data.frame(var1 = 1:3, var2 = c(18, 11, 16), se = c(1.2, 0.5, 1.0))
df

p <- ggplot(df, aes(var1, var2, ymin = var2 - se, ymax = var2 + se))

p + geom_crossbar() + ggtitle("crossbar")
p + geom_pointrange() + ggtitle("pointrange")
p + geom_smooth(stat = "identity") + ggtitle("smooth")
p + geom_point() + geom_errorbar() + ggtitle("errorbar")
p + geom_linerange() + ggtitle("linerange")
p + geom_ribbon(stat = "identity") + ggtitle("ribbon")

We can combine several geom_ objects on the same plot to represent the same dataset. Each geom object
may take in its own aesthetics mappings, even though some aesthetics are incompatible with some geom_
objects. For instance, shape is OK with points, but not with lines, whereas the opposite is true for linetype.

Look at the different plots produced here below. We will only reproduce one of them on the pdf.
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +

geom_point() +
geom_smooth()

6.4.1 Combining geometries

That plot combines two geometries on the same plot, but both geometries are very different in nature:
the points represent the x and y variables as they appear on the dataset, that is, they represent coordinate
identities between x and y. This is not the case for the smooth geometry, which does not represent the
variables as they are, but the result of a statistical transformation, in this case a smooth fit.

The following plots are variants of that previous one and they are just intended to provide you with elements
to learn how ggplot2 works.
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +

geom_point(aes(color = drv)) +
geom_smooth()

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth(aes(color = drv))

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_point(aes(color = drv)) +
geom_smooth(aes(linetype = drv))

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth(aes(linetype = drv, color = drv))

ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
geom_point() +
geom_smooth(aes(linetype = drv), show.legend = FALSE)

ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
geom_point(show.legend = FALSE) +
geom_smooth(mapping = aes(linetype = drv), show.legend = FALSE, se = FALSE)

34



ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
geom_point() +
geom_smooth(mapping = aes(linetype = drv), se = FALSE) +
theme(legend.position = "none")

6.5. Statistics and transformations
Some geometries represent the data as they appear on the dataset, whereas some others plot the result of a
statistic transformation of the data. In the chapter above, we created smoothers to fit a model, and we will
see further down how to create boxplots, a nice way to compute and summarize he data in a box. Those two
require as well statistical transformation of the data because they do not plot the actual data as a scatter
plot, for instance, would do.

But those two are not the only examples of plots requiring statistical transformation. In fact, bar charts
and histograms (not to be confounded this two, by the way), are probably the most evident plot for which
statistical transformation is required.

Look at this tidyverse dataset, that we will be using for a while.
diamonds

Let us say I want to display those ~54K diamonds in a bar chart, grouped by cut.
ggplot(diamonds) +

geom_bar(aes(x = cut))

What is going on there is more subtle than it seems. Bear in mind that the counts variable does not exist in
the diamonds data set. In other words: some new values have been calculated in order to make the plot.
Indeed, we are plotting the cut variable on the x axis but we are not mapping any aesthetics on the y axis.
That is because bar charts, as it happens with histograms, they bin the data and then plot the counts of each
bin. In the example above, ggplot2 has counted for us the number of diamonds on every level of the cut
variable and then has plotted the sum for us. That is, there has been a statistical transformation of the data
to make the plot.

Indeed, that plot is the output the following code for the plot, mapping cut to the x axis and mapping the n
variable, which is renamed as count, to the y axis
aux <- diamonds %>% group_by(cut) %>% count()
ggplot(aux, aes(x = cut, y = n)) + geom_point()

By running the following line
?geom_bar

You will see that the default statistic when you perform a bar chart is counts, that is ggplot2 execute the
stat_count() statistical transformation behind the curtains when you call a bar chart. In fact, we ould
have run:
ggplot(diamonds) +

stat_count(aes(x = cut))

As opossed to what happens with geom_bar(), which requires data transformation to get the plot, many
geometries, such as geom_point(), present stat_identity() as default, meaning that the data will be
plotted as it is.

What would happen if I tried to stat_identity() to make a bar chart?
ggplot(diamonds) +

stat_identity(aes(x = cut))

35



Indeed, every geom_ has a default stat_, and every stat_ has a default geom_. In many occasions, you will
need to change the default stat_.

Le us see the example below, where we want to calculate, and display, the mean price for every diamond cut.
aux <- diamonds %>%

group_by(cut) %>%
summarise(mean.price = mean(price))

aux
ggplot(aux) +

geom_bar(aes(x = cut))

Indeed, it counts how many rows there are in the aux data frame for every cut level.
aux %>% group_by(cut) %>% count()

We need to change the default stat_ to identity so that we plot the data in aux as they are. In order to do
so, we need to map the mean price onto the y axis, as the error on our first attempt here below shows.
ggplot(aux) +

geom_bar(aes(x = cut), stat = "identity") # Error

ggplot(aux) +
geom_bar(aes(x = cut, y = mean.price))

ggplot(aux) +
geom_bar(aes(x = cut, y = mean.price), stat = "identity")

You may do so by using asking for the mean price under stat_summary(). This wil use a dot as the default
geometry, bu you may change it to a bar.
ggplot(data = diamonds) +

stat_summary(
mapping = aes(x = cut, y = price),
fun = mean,
geom = "bar")

ggplot(data = diamonds) +
stat_summary(

mapping = aes(x = cut, y = price),
fun = mean)

In fact, you may choos stat_summary() to map other stats about the data.
ggplot(data = diamonds) +

stat_summary(mapping = aes(x = cut, y = price),
fun.min = min,
fun.max = max,
fun = mean)

According to that last paragraph, could you explain the outcome of this chunk here below?
ggplot(diamonds) +

geom_col(aes(x = cut, y = price/10^6))

6.6. Position adjustments
Position adjustments tweak the position of mapped elements within a layer. Three adjustments apply
primarily to bars:

36



• stack: stack overlapping bars (or areas) on top of each other.
• fill: stack overlapping bars, scaling so the top is always at 1.
• dodge: place overlapping bars (or boxplots) side-by-side.

Position stack is the default for bars, so geom_bar() is equivalent to geom_bar(position = "stack").
p <- ggplot(diamonds, aes(x = color, fill = cut))
p + geom_bar()
p + geom_bar(position = "stack")
p + geom_bar(position = "fill")
p + geom_bar(position = "dodge")

You see that we have mapped the x axis to the color variable, but the fill aesthetic has been mapped to
cut. Hence, the number of diamonds for every cut level within every color are counted and plotted. The
magic behind plots like this one comes from the fact that just with two code lines we have a rather complex
plot that would have taken much more effort and headaches if we were using base R.

Those position adjustments were primarily for bars. The following position adjustments are primarily for
points: * nudge: move points by a fixed offset. * jitter: add a little random noise to every position. *
jitterdodge: dodge points within groups, then add a little random noise.

We will see some of them in greater detail further down in the document, but let us have a taste of what hose
do, and why.

If we go back to the cars plot, we realize there is a problem with it.
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, , color = drv)) +

geom_point()

Indeed, there are 234 observations in the dataset, but we can only observe 126 dots on that plot. That is
because some points are totally superposed to other data points. One way to avoid that is to add some
random noise to the coordiates of each point.
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, , color = drv)) +

geom_point(position = "jitter", )

Or the equivalent:
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, , color = drv)) +

geom_jitter(width = 0, height = 1)

6.7 ggplot2 examples
Going through each possible ggplot2 detail is impossible. I suggest at this point we go through some examples
that will bring about new features. I would like to insist on two key aspects when you are using ggplot2 :

• You will come up with some plot in your head that you do not know how to implement. Do not hesitate
to google it because it is very likely that the plot is doable. It is literally impossible to memorize
everything about gplot2, so there is no shame on googling around.

• Feel free to copy paste from the internet answers to questions that you have asked yourselves ten times
before. Even Hadley Wickham says that ggplot2 is too vast for him and that he has to look up for
things in the net! So. . .

6.7.1 Histograms

We will start doing some histograms with the diamonds dataset. Remember the difference between a
barplot and a histogram: a barplot is built by counting the data points on each bin of a discrete variable,
where bins are defined by the levels of that discrete variable. In a histogram, the mapped variable is
continuous and, therefore, there are not discrete bins. Indeed, the size of the bins define a range of the

37



continuous variables and can tuned up. Tuning the number or the size of the bins of the continuous variable
will have direct consequences on how the histogram will look.
ggplot(diamonds, aes(x = price)) +

geom_histogram(bins = 50)

In the example above we’ve cut the range of price variable in fifty equally ranged bins. In order to make the
histogram, the number of diamonds in each of those bins are counted.

The histogram will look totally different if we change the number of bins to be considered.
ggplot(diamonds, aes(x = price)) +

geom_histogram(bins = 500)

ggplot(diamonds, aes(x = price)) +
geom_histogram(bins = 2)

The next one gives an error.
ggplot(diamonds, aes(x = price, y = carat)) +

geom_histogram(bins = 50)

The reason is that, as it happened with geom_barplot(), we are not supossed to map a second variable
onto the y axis.

What we can do, as we can with barplots, is to map another aesthetic, such as colour or fill to a different
variable.
ggplot(diamonds, aes(x = price, fill = color)) +

geom_histogram(bins = 50)

ggplot(diamonds, aes(x = price, color = color)) +
geom_histogram(bins = 50)

ggplot(diamonds, aes(x = price, color = color)) +
geom_histogram(bins = 50, fill = "white")

We can also use faccets, of course. In this case, a distinct histogram will be drawn for each of the facet.
ggplot(diamonds, aes(x = price, fill = color)) +

geom_histogram(bins = 50) +
facet_wrap( ~ cut)

And we can of course fre the scale(s)
ggplot(diamonds, aes(x = price, fill = color)) +

geom_histogram(bins = 50) +
facet_wrap( ~ cut, scales = "free_y")

We may zoom at any particular range using xlimor ylim
ggplot(diamonds, aes(x = price, fill = color)) +

geom_histogram(bins = 50) +
theme_bw() +
xlim(4000, 20000)

ggplot(diamonds, aes(x = price, fill = color)) +
geom_histogram(bins = 50) +
theme_bw() +

38



xlim(4000, 20000) +
facet_wrap( ~ cut)

As we’ve already seen, the bins argument will determine the shape of the histogram, to the extent in which
the histogram may be interpreted differently depending on the number of bins you have used to build it.
That bins argument will indeed split the data is as many bins, being hard to tell what the minimum and
maximal values for every bin are.

Instead of bins you may use the binwidth argument. In this case, you will determine what the range of the
bins will be. In this case, you will not know how many bins there are as a result.
ggplot(diamonds, aes(x = price, fill = color)) +

geom_histogram(binwidth = 1000)

That histogram may look strange at first, because of the small number of diamonds within the first bin.
We would have expected that bin to count diamonds between 0 and 1000 dollars. This is what is going on:
The histogram takes the 0 and looks 500 dollars below and above for the first bar. Obviously, there are not
negative prices. Therefore the first bar tells us how many diamonds are cheaper that 500 dollars: 1729, to be
precise. The second bar will tell us how many diamonds there are between 500 and 1500 dollars, and so on.

You may easily change that by using the boundary argument. By setting it to 0, you will get the histogram
starting at 0. Therefore, and using a binwidth of 1000, you now get in the first bin the number of diamonds
that are cheaper than 1K dollars, then those between 1K and 2K in the second bin etc.
ggplot(diamonds, aes(x = price, fill = color)) +

geom_histogram(binwidth = 1000, boundary = 0)

You may also build bins with customaized widths using the breaks argument.
ggplot(diamonds, aes(x = price, fill = color)) +

geom_histogram(breaks = c(0, 1000, 7000, 9000, max(diamonds$price)))

6.7.2 Boxplots and beyond

We will startby selecting 1000 random diamonds, for graphic clarity purposes. We will use the sample_n()
function from dplyr for that purpose.
set.seed(1)
my.diamonds <- diamonds %>% sample_n(1000) # Just to have 1000 diamonds, for clarity purposes.
ggplot(my.diamonds, aes(x = color, y = price, fill = color)) +

geom_boxplot(outlier.size = 0)

The outliers are still there even though I set outlier.size = 0. That is because that is not the way I should
code if I wanted the ouliers be removed. I looked for “boxplot ggplot2 without outliers” in Google. From the
first hit:
ggplot(my.diamonds, aes(x = color, y = price, fill = color)) +

geom_boxplot(outlier.shape = NA)

Let us compare the boxplots with the histogram for the same data
ggplot(my.diamonds, aes(x = price, fill = color)) +

geom_histogram() +
facet_wrap(~color)

Histogram gives us a beter understanding of the data distribution. However it makes it harder to campare
two distributions with each other. Violin plots are an attempt to bring the best of histograms and boxplots
in a single plot.

39



ggplot(my.diamonds, aes(x = color, y = price, fill = color)) +
geom_violin()

ggplot(my.diamonds, aes(x = color, y = price, fill = color)) +
geom_violin(trim = FALSE)

Violin plots are scaled by default to have the same area (if trim = FALSE). If the scale parameter is changed
to count, then violins will be scaled proportionally to the number of observations. If changed to width, then
all violins will have the same maximum width
ggplot(my.diamonds, aes(x = color, y = price, fill = color)) +

geom_violin(trim = FALSE, scale = "count")
ggplot(my.diamonds, aes(x = color, y = price, fill = color)) +

geom_violin(trim = FALSE, scale = "width")

Those large tuning possibilities for violin plots are the reason why I am not a particularly big fan of those
plots. There are alternative ways to display data so that both sample comparisons and distribution outlines
are possible at the same time, some of which are increasingly demanded by editors and reviewers.

Let us start going back to dot plots:
ggplot(my.diamonds, aes(x = color, y = price, colour = cut)) +

geom_point()

That plot is not good cause points ovelap with each other. What if we introduce some (small) random noise
on the points? We can use the above mentioned position adjustments.
ggplot(my.diamonds, aes(x = color, y = price, colour = cut)) +

geom_point(position = position_jitter(width = 0.2))

Ok, we can do it better if we introduce that random noise by group
ggplot(my.diamonds, aes(x = color, y = price, colour = cut)) +

geom_point(position = position_jitterdodge(jitter.width = 0.2, dodge.width = 0.6))

And then again, we can reduce the ovelap impression by a dding a transparency criterium with alpha.
ggplot(my.diamonds, aes(x = color, y = price, colour = cut)) +

geom_point(position = position_jitterdodge(jitter.width = 0.2,
dodge.width = 0.6),

alpha = 0.5)

We can remove the apha criterium just from the legend.
ggplot(my.diamonds, aes(x = color, y = price, colour = cut)) +

geom_point(position = position_jitterdodge(jitter.width = 0.2,
dodge.width = 0.6),

alpha = 0.5) +
guides(colour = guide_legend(override.aes = list(alpha = 1)))

And then, I can combine boxplots and points, change the colour, change the background theme etc. Pay
some attention to the order in which you use your geometries, and the colours yo applay to them, since it
may affect the final result.
ggplot(my.diamonds, aes(x = color, y = price, colour = cut)) +

geom_boxplot(colour = "black", fill = "white", outlier.shape = NA) +
geom_point(position = position_jitterdodge(jitter.width = 0.2,

dodge.width = 0.6),
alpha = 0.5) +

40



guides(colour = guide_legend(override.aes = list(alpha = 1))) +
theme_bw()

ggplot(my.diamonds, aes(x = color, y = price, colour = cut)) +
geom_point(position = position_jitterdodge(jitter.width = 0.2,

dodge.width = 0.6),
alpha = 0.5) +

geom_boxplot(colour = "black", fill = "white", outlier.shape = NA) +
guides(colour = guide_legend(override.aes = list(alpha = 1))) +
theme_bw()

ggplot(my.diamonds, aes(x = color, y = price, colour = cut)) +
geom_point(position = position_jitterdodge(jitter.width = 0.2,

dodge.width = 0.6),
alpha = 0.5) +

geom_boxplot(colour = "black", fill = NA, outlier.shape = NA) +
guides(colour = guide_legend(override.aes = list(alpha = 1))) +
theme_bw()

6.7.3 Examples carto
The map_data() turns data from the maps package into data frames that can be used for ggplot2 plotting.
usa <- map_data("usa")
head(usa)

gg.usa <- ggplot() +
geom_polygon(data = usa, aes(x = long, y = lat, group = group),

fill = "white",
color = "red") +

coord_quickmap()
# Or:
gg.usa <- ggplot() +

geom_polygon(data = usa, aes(x = long, y = lat, group = region),
fill = "white",
color = "red") +

coord_quickmap()

We’ll create another data frame that we will use to add features to our map.
labs <- tibble(

long = c(-73.935242, -122.335167, -87.623177, -97.508469, -109.045189),
lat = c(40.730610, 47.608013, 41.881832, 35.481918, 36.998981),
names = c("NYC", "Seattle", "Chicago", "Oklahoma City", "Four Corners"))

gg.usa +
geom_point(data = labs, aes(x = long, y = lat),

shape = 21,
color = "black",
fill = "yellow",
size = 5) +

geom_text(data = labs, aes(x = long,y = lat, label = names),
hjust = 0, nudge_x = c(1, 1, -11, 1, 1), nudge_y = c(rep(0,4),2)) +

geom_path(data = labs, aes(x = long, y = lat), color = "blue", linetype = "dashed") +
theme_bw()

41



The following map goes down to the state level.
states <- map_data("state")
ggplot(data = states) +

geom_polygon(aes(x = long, y = lat, fill = region, group = group),
color = "white",
show.legend = FALSE) +

geom_point(data = labs, aes(x = long, y = lat),
shape = 21,
color = "black",
fill = "yellow",
size = 5) +

geom_text(data = labs, aes(x = long, y = lat, label = names),
hjust = 0, nudge_x = c(1, 1, -11, 1, 1), nudge_y = c(rep(0,4),2)) +

coord_quickmap() +
theme_bw()

In the plot above we could have used group = group under geom_polygon().

We may choose then to focus on the West Coast, for example.
ggplot(data = states %>%

filter(region %in% c("california", "oregon", "washington"))) +
geom_polygon(aes(x = long, y = lat, group = group, fill = region), color = "white") +
coord_quickmap() +
geom_point(data = labs %>% filter(names == "Seattle"), aes(x = long, y = lat),

shape = 21,
color = "black",
fill = "yellow",
size = 5) +

geom_text(data = labs %>% filter(names == "Seattle"),
aes(x = long, y = lat, label = names),
hjust = 0,
nudge_x = c(1)) +

theme_bw()

We may add quantitative data to the map. The ÙSArrests data set compiles the number of arrests in the
USA in 1973 per 100.000 people for different crimes.
head(USArrests)
?USArrests
my.arrests <- rownames_to_column(USArrests, var = "region") %>%

mutate(region = tolower(region))

map_arrests <- left_join(states, my.arrests)

ggplot(data = map_arrests) +
geom_polygon(aes(x = long, y = lat, group = group, fill = Murder), color = "white") +
coord_quickmap() +
theme_bw()

ggplot(data = map_arrests) +
geom_polygon(aes(x = long, y = lat, group = group, fill = Murder*(UrbanPop/100)),

color = "white") +
coord_quickmap() +

42



theme_bw()

In the plot below, we have the world map, in which we give colour to countris whose name starts with an ‘A’.
world_map <- map_data("world")
ggplot(world_map, aes(x = long, y = lat, group = group)) +

geom_polygon(aes(fill= grepl("^A",world_map$region)), colour = "white") +
coord_quickmap() +
theme_bw() +
scale_fill_discrete(name = "Countries starting with 'A'") +
theme(legend.position = "bottom")

In this final example here below, we use the map of France, we colour the Departments and we locate the
OMP.
france_map <- map_data("france")
OMP <- tibble(

long = 1.477502,
lat = 43.565709,
names = "OMP")

ggplot(france_map, aes(x = long, y = lat)) +
geom_polygon(aes(fill= region), colour = "white", show.legend = FALSE) +
coord_quickmap() +
geom_point(data = OMP, aes(x = long, y = lat),

shape = 21,
color = "black",
fill = "yellow",
size = 5) +

geom_text(data = OMP, aes(x = long, y = lat, label = names), hjust = 0, nudge_x = 0.5) +
theme_bw()

Volcano Plots

I have produced here a code chunk to make volcano plot. I took advantage of the code to show you how you
can run tidyr and dplyr output objects directly into ggplot2 and then saving the file into an image file, all
in one chunk.

I remind you that because tidyverse executes the command lines as they appear, I suggest you run the code
line by line if you want to fully understand what each of those lines do. You just need to copy a chunk up to
the pipe on a given line to know what the copied chunk does. Then you add the next code line and so on.
library(ggrepel)
load("forvolc.RData")
forvolc

forvolc %>%
mutate(aux = (abs(log2FCs) > 1)*(FDR < 0.01),

aux = log2FCs*aux,
sense.2FC = "NS") %>%

mutate(sense.2FC = ifelse(aux != 0 & log2FCs < 0, "DOWN", sense.2FC)) %>%
mutate(sense.2FC = ifelse(aux != 0 & log2FCs > 0, "UP", sense.2FC)) %>%
dplyr::select(-aux) %>%

ggplot(aes(x = log2FCs, y = -log10(pvs), colour= sense.2FC)) +
geom_point(alpha = 0.3) +
geom_text_repel(data = . %>%

43



filter(sense.2FC != "NS", abs(log2FCs) > 5),
aes(label = gene),

colour = "black",
show.legend = FALSE) +

scale_colour_brewer(palette = "Set1") +
theme_bw()

ggsave("volcanos.png")

6.8 Colours
Customizing coloursin ggplot2 is an endeless affair. We will just mention a tiny portion of it, and a few key
functions and colour pallets. Two, among many others, to change the colours is using the RColorBrewer and
the viridis packages, which you have already loaded at the begining of this document.

If you are customizing the fill, then you need to choos scale_fill_X() functions, where X refers to the
type of data your are handling (discrete, continous. . . ) or the package uor untend to apply. If you are not
changinf fill, but colour, you need to use scale_colour_X() functions.

One example with RColorBrewer. We start by using display.brewer.all() to have an idea about the available
pallets.
display.brewer.all()

ggplot(my.diamonds, aes(x = color, y = price)) +
geom_boxplot(outlier.shape = NA) +
geom_point(aes(colour = cut),

position = position_jitterdodge(jitter.width = 0.2, dodge.width = 0.6),
alpha = 0.5) +

guides(colour = guide_legend(override.aes = list(alpha = 1))) +
scale_colour_brewer(palette = "Set1") +
theme_bw()

A nice introduction to the viridis package is given by the following vignette. You will realize about the
amount of time you may spend choosing just colour etc. If you are interested in developping ideas about
colours for your plots, exploring documents like that one is a godd start.
vignette("intro-to-viridis")

Here below is just an example of the numerous possibilities that the package proposes. Do not hesitate to
use ?scale_colour_viridis. It will tell you what the available palettes are, implemented by the option
argument.
ggplot(my.diamonds, aes(x = color, y = price)) +

geom_boxplot(outlier.shape = NA) +
geom_point(aes(colour = cut),

position = position_jitterdodge(jitter.width = 0.2, dodge.width = 0.6),
alpha = 0.5) +

guides(colour = guide_legend(override.aes = list(alpha = 1))) +
scale_colour_viridis(discrete = TRUE, option = "H") +
theme_bw()

6.9 How to produce a list of plots
Let us say now that I have several variables in my dataset, for which I want to produce identical plots, one
variable at a time. In the example her I have a gene expression dataset and I want to produce the same plot

44



for each of those genes in my data set. The first thing that I will need to do is to have one column for each
variable, that is for each gene. In other words, consider each gene as an independent variable that can be
mapped.
geneset3.tidy
genes_for_ggplot <- geneset3.tidy %>%

dplyr::select(-c(1,3:9)) %>%
pivot_wider(names_from = "ID", values_from = "Expression")

Let us say I want to plot a single gene to obtain the graphic here below.
ggplot(genes_for_ggplot,aes(x = Treatment,

y = DTOXU,
colour = Genotype,
shape = Rep)) +

geom_point (size = 5,
alpha = 0.7) +

stat_summary (aes (group = Genotype),
geom = "line",
fun = "mean",
size = 1,
show.legend = FALSE) +

ylab("Gene Expression") +
theme_bw() +
ggtitle("DTOXU")

Now that I know the plot that I want, how can make it for all genes in my data set? The most elegant way to
do so would be using the lapply() that we have already mentioned in the past. We may try a loop instead.
It is longer in computing time and less elegant, but it is easier to grasp. First, you will need to create a list,
so that you will save the product of each iteration of the loop, that is a plot, in a unique drawer in the list.
gene.plots <- as.list (colnames (genes_for_ggplot)[-c(1:3)])
gene.plots
names (gene.plots) <- colnames (genes_for_ggplot)[-c(1:3)]
gene.plots

Then we can build a loop to make the plots, which may look a little bit like this.
for (i in 4:ncol(genes_for_ggplot))

gene.plots[[i-3]] <- ggplot(genes_for_ggplot,
aes_string(x = "Treatment",

y = colnames(genes_for_ggplot)[i],
col = "Genotype",
shape = "Rep")) +

geom_point (size = 5,
alpha = 0.7) +

stat_summary (aes (group = Genotype),
geom = "line",
fun = "mean",
size = 1,
show.legend = FALSE) +

ylab("Gene Expression") +
theme_bw() +
ggtitle(colnames (genes_for_ggplot)[i])

gene.plots[[1]]
gene.plots[[2]]

45



gene.plots[[3]]

Let us just add an advanced note to all this: you may avoid creating the list in advance and you may even
avoid the for loop. Using sapply(), lapply() or tapply() functions may require some coding expertise, but
you will get there, if you are not yet. Using those functions will save you coding time and indeed execution
time.
new.plot.list <- lapply(c("WISE1", "RiCRD", "MANY_PULATE"),

function(x) ggplot(genes_for_ggplot,
aes_string(x = "Treatment",

y = colnames (genes_for_ggplot)
[colnames (genes_for_ggplot) == x],
col = "Genotype",
shape = "Rep")) +

geom_point (size = 5,
alpha = 0.7) +

stat_summary (aes (group = Genotype),
geom = "line",
fun = "mean",
size = 1) +

ylab("Gene Expression") +
theme_bw() +
ggtitle(x))

new.plot.list[[1]]

6.10 Fonts: types and sizes
This section we deal with font type and size on a ggplot. This will allow us to go through some aspects
about how ggplot2 deals with text, titles, labels etc.

The arguments to put (or change) a plot title or an axis label are: title, xlab and ylab.
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +
ggtitle("Petrol yield according to engine size") +
xlab("engine displacement, in litres") +
ylab("highway miles per gallon")

You can change font sizes in different manners according to what you want to do. All those text elements
will be included in theme layer.
# All text elements will have the same size
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +
ggtitle("Petrol yield vs engine size") +
xlab("engine displacement, in litres") +
ylab("highway miles per gallon") +
theme(text = element_text(size = 25))

# Different sizes for different elements
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +
ggtitle("Petrol yield vs engine size") +
xlab("engine displacement, in litres") +
ylab("highway miles per gallon") +
theme(plot.title = element_text(size = 15),

46



axis.text = element_text(size = 50),
axis.title = element_text(size = 25))

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
ggtitle("Petrol yield vs engine size") +
xlab("engine displacement, in litres") +
ylab("highway miles per gallon") +
theme(plot.title = element_text(size = 15),

axis.text.x = element_text(size = 50),
axis.title.y = element_text(size = 25))

# We can distinguish x and y text elements
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +
ggtitle("Petrol yield vs engine size") +
xlab("engine displacement, in litres") +
ylab("highway miles per gallon") +
theme(plot.title = element_text(size = 15),

axis.text.x = element_text(size = 25),
axis.text.y = element_text(size = 15),
axis.title.x = element_text(size = 20),
axis.title.y = element_text(size = 5))

You may change the font under the family parameter in element_text(), using the extrafont package.
install.packages("extrafont")
library(extrafont)

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
ggtitle("Petrol yield vs engine size") +
xlab("engine displacement, in litres") +
ylab("highway miles per gallon") +
theme(text = element_text(size = 15, family = "Courier"))

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
ggtitle("Petrol yield vs engine size") +
xlab("engine displacement, in litres") +
ylab("highway miles per gallon") +
theme(axis.title.x = element_text(size = 35, family = "Times"))

6.10 Annotate
We will see now how to annotate plots. By annotating we mean adding elements not coming from the data
but which will allow underlining or highlighting certain aspects of the plot. We will see how to add text,
segments and lines

In the plot here below we will add, in this order: * Some text to annotate whatever we wish to * A segment
to point out something. In this case we have given it the arrow shape, but this has not necessarily to be the
case. * A horizontal line * A vertical line
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +

47



annotate(geom = "text",
hjust = 0,
x = 5,
y = 30,
label = "this is my car",
col = "orange",
size = 5) +

geom_segment(aes(x = 5,
y = 29,
xend = 5.3,
yend = 25.5),

colour = "orange",
arrow = arrow(ends = "last",

type = "closed",
length = unit(0.25,"cm"))) +

geom_hline(yintercept = 20, color = "red") +
geom_vline(xintercept = 3, linetype="dashed", color = "blue")

6.11 Combining forcats and ggplot2
We’ve had a quick look at forcats package. This packages makes whole sense when we combine it with ggplot2
to produce graphics.
ggplot(iris,

aes(x = fct_reorder(Species, Sepal.Width), y = Sepal.Width)) +
geom_boxplot()

ggplot(iris,
aes(x = fct_reorder(Species, Sepal.Width, .desc = TRUE), y = Sepal.Width)) +

geom_boxplot()

ggplot(starwars, aes(x = hair_color)) +
geom_bar() +
coord_flip() +
theme_bw()

ggplot(starwars, aes(x = fct_inorder(hair_color))) +
geom_bar() +
coord_flip()

ggplot(starwars, aes(x = fct_infreq(hair_color))) +
geom_bar() +
coord_flip()

A very interesting feature in forcats is the fct_lump() function, and its associates. These functions allow to
lump factor levels into n other group (default behaviour: the group might be renamed).
starwars %>%

count(skin_color, sort = TRUE)

starwars %>%
mutate(skin_color = fct_lump(skin_color, n = 5)) %>%
count(skin_color, sort = TRUE)

48



starwars %>%
mutate(skin_color = fct_lump(skin_color, prop = .1)) %>%
count(skin_color, sort = TRUE)

starwars %>%
mutate(skin_color = fct_lump(skin_color, n = 5)) %>%
count(skin_color, sort = TRUE) %>%
ggplot(aes(x = skin_color, y = n)) +
geom_col()

starwars %>%
mutate(skin_color = fct_lump(skin_color, n = 5)) %>%
count(skin_color, sort = TRUE) %>%
ggplot(aes(x = fct_reorder(skin_color, desc(n)), y = n)) +
geom_col()

6.12 Beyond ggplot2
The ggplot2package is a huge package, a very rich one. Thus, its main original developer, the ubiquitous
Hadley Wickham, is reluctant to increase it in size and functions. In fact, he relies on the very strong and
reactive community around ggplot2 in order to build the so called extensions to ggplot2. Those extensions
are just packages that work within the same logic as ggplot in order to complement it, and they are not
meant to be used in a stand-alone manner. These numerous extensions are sometimes niche-specific developed
by specialists, but very often they provide invaluable tools for the overall community by pushing the already
large boundaries of ggplot2. Moreover, those extension might be combined with each other so that possibilities
are countless. The site http://exts.ggplot2.tidyverse.org/ curates all those extensions and it is a very
handy place to start exploring the universe beyond ggplot2
For this training course, we will focus on extensions devoted to plot composition. Indeed, one of the most
obvious “limitations” of ggplot2 alone is the fact that you cannot put independently produced objects,
i.e. plots, on the single page. There are quite a few extensions dealing with this issue, such as gridExtra,
ggpubr, cowplot or the one we will be exploring here, patchwork.

6.12.1 patchwork

p1 <- ggplot(msleep) +
geom_boxplot(aes(x = sleep_total, y = vore, fill = vore)) +
theme_bw()

p1

p2 <- ggplot(msleep) +
geom_bar(aes(y = vore, fill = vore)) +
theme_bw()

p2

p3 <- ggplot(msleep) +
geom_point(aes(x = bodywt, y = sleep_total, colour = vore)) +
scale_x_log10()

p3

Combining those plots with patchwork
library(patchwork)
vignette("patchwork")

49



p1 + p2

p1 + p2 + labs (title = "My last plot")

p1 + labs(title = "My first plot") +
p2 + labs (title = "My last plot")

p1 + p2 & labs (title = "This will appear on both plots")

p1 + labs(subtitle = "Subtitle for the first plot") +
p2 + labs (subtitle = "Subtitle for the last plot") &
labs (title = "This will appear on both plots")

p1 + p2 + p3
p1 + p2 + p3 + plot_layout(nrow = 2)
p1 + p2 + p3 + plot_layout(nrow = 2, byrow = FALSE)
p1 | p2 / p3
(p1 | p2) / p3
(p1 | p2) / p3 + plot_layout(guides = 'collect')

Plot compositions can also be stored as an object, and then I can use ggplot2 themes
p_all <- (p1 | p2) / p3 + plot_layout(guides = 'collect')
p_all + theme(legend.position = 'none') ## Why?
p_all & theme(legend.position = 'none')
p_all <- p_all & theme(legend.position = 'none')
p_all + plot_annotation(

title = 'Mammalian sleep patterns',
tag_levels = 'A'
)

p_all + plot_annotation(
title = 'Mammalian sleep patterns',
tag_levels = '1' # Try tag_levels = 'i' and tag_levels = 'I'
)

Patchwork will assign the same amount of space to each plot by default, but this can be controlled with the
widths and heights argument in plot_layout(). This can take a numeric vector giving their relative sizes
(e.g. c(2, 1) will make the first plot twice as big as the second). Modify the code below so that the middle
plot takes up half of the total space:
p1 + p2 + p3 + plot_layout(widths = c(1,2,1))
p1 + p2 + p3 + plot_layout(widths = c(1,2,1)) &

theme(legend.position = 'none')
p1 + p2 + p3 + plot_layout(widths = unit(c(5,1,1), c("cm","inches","inches")))
# search unit function
p1 + p2 + p3 + plot_layout(widths = unit(c(5,1,1), c("cm","inches","inches"))) &

theme(legend.position = 'none')
p1 + p2 + p3 + plot_layout(widths = unit(c(5,1,1), c("cm","null","null"))) &

theme(legend.position = 'none')
p1 + p2 + p3 + plot_layout(widths = unit(c(5,2,1), c("cm","null","null"))) &

theme(legend.position = 'none')
p1 + p2 + p3 + plot_layout(widths = unit(c(5,2,1), c("cm","inches","null"))) &

theme(legend.position = 'none')

Patchwork contains many features for fine tuning the layout and annotation. Very complex layouts can be

50



obtained by providing a design specification to the design argument in plot_layout(). The design can
be defined as a textual representation of the cells. Use the layout given below. How should the textual
representation be understood.
layout <- 'A
B
C
'
p1 + p2 + p3 + plot_layout(design = layout)

layout <- 'F
D
B
'
p1 + p2 + p3 + plot_layout(design = layout)

layout <- 'A#
#B
C#
'
p1 + p2 + p3 + plot_layout(design = layout)

layout <- 'AA#
#BB
C##
'
p1 + p2 + p3 + plot_layout(design = layout, guides = "collect")

layout <- 'AACC
#BB#'
p1 + p2 + p3 + plot_layout(design = layout)

6.12.2 gghalves

Another useful extension of ggplot2 is the gghalves package. This package allows splitting every slot in
the x axis in two and then plot a different geometry in each half. You may thus combine boxplots, dot,
densities. . . those half geometries are implemented as shown below. For any of those geometries there is a
parameter called side that will determine if the geometry will be plotted on the left side of the slot or on the
right side. For boxplots and violins, for instance, the default side is l, for left; for dots, on the other hand,
the default value is r, for right. You can obviiously change them.
library(gghalves)

ggplot(my.diamonds, aes(x = color, y = price, colour = color)) +
geom_half_boxplot(outlier.shape = NA) +
geom_half_point(alpha = 0.5, show.legend = FALSE) +
theme_bw()

ggplot(my.diamonds, aes(x = color, y = price, colour = color)) +
geom_half_point(alpha = 0.5, show.legend = FALSE) +
geom_half_boxplot(outlier.shape = NA) +
theme_bw()

ggplot(my.diamonds, aes(x = color, y = price, colour = color)) +
geom_half_point(alpha = 0.5, side = "l", show.legend = FALSE) +

51



geom_half_boxplot(side = "r", outlier.shape = NA) +
theme_bw()

ggplot(my.diamonds, aes(x = color, y = price, colour = color)) +
geom_half_violin() +
geom_half_point(alpha = 0.2) +
theme_bw()

ggplot(my.diamonds, aes(x = color, y = price, colour = color)) +
geom_half_boxplot(outlier.shape = NA) +
geom_half_point(alpha = 0.5, side = "l", show.legend = FALSE) +
geom_half_violin(side = "r") +
theme_bw()

52


	1. INTRO
	2. tidyr
	2.1. pivot_longer() / pivot_wider()
	2.2. unite() / separate()
	Exercise 1

	2.3. fill()

	3. dplyr
	3.1. filter()
	Exercise 2

	3.2. arrange()
	Exercise 3

	3.3. select() and rename()
	3.4. mutate() / transmute()
	Exercise 4

	3.5. summarise
	3.6. group_by
	3.7. A final word on the pipe: %>%
	Excercise 5

	3.8. join
	3.9. Set operations
	3.10. count

	4. forcats
	5. purrr
	5.1. detect() and detect_index()
	5.2. keep() and discard()
	5.3. flatten() and flatten_X() functions
	5.4 map()

	6. ggplot2
	6.1. Layers
	6.2. Mapping aesthetics
	6.3. Facets
	6.4 Geometries
	6.4.1 Combining geometries

	6.5. Statistics and transformations
	6.6. Position adjustments
	6.7 ggplot2 examples
	6.7.1 Histograms
	6.7.2 Boxplots and beyond

	6.7.3 Examples carto
	Volcano Plots

	6.8 Colours
	6.9 How to produce a list of plots
	6.10 Fonts: types and sizes
	6.10 Annotate
	6.11 Combining forcats and ggplot2
	6.12 Beyond ggplot2
	6.12.1 patchwork
	6.12.2 gghalves



